

Testing nuclear forces in many-body calculations

Petr Navratil Lawrence Livermore National Laboratory*

Collaborators:

A. Nogga (Julich), W. E. Ormand (LLNL), E. Caurier (Strasbourg),J. P. Vary (ISU), C. Forssen, V. Gueorguiev (LLNL),B. R. Barrett, I. Stetcu (UA)

^{*}This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. UCRL-PRES-213142

Outline

- Motivation
- *Ab initio* no-core shell model (NCSM)
- ⁶Li and ¹⁰B calculations with the EFT N³LO NN potential
- Importance of three-nucleon interaction (TNI)
- First results with EFT N³LO NN potential plus consistent N²LO TNI
- Results from INOY nonlocal NN potential and a comparison to standard high-precision potentials
- Conclusions

Ab initio approaches to nuclear structure

- Goal: Describe nuclei as systems of nucleons that interact by fundamental interactions
 - Non-relativistic point-like nucleons interacting by realistic two- and three-nucleon forces
- Why it has not been solved yet?
 - High-quality nucleon-nucleon potentials constructed only recently
 - Difficult to use in many-body calculations
 - Need sophisticated approaches
 - Big computing power
 - Three-nucleon interaction not well known
 - Even more computing power needed to include it in many-body calculations

- A=3.4 many exact methods
 - 2001: A=4 benchmark paper: 7 different approaches obtained the same ⁴He bound state properties
 - Faddeev-Yakubovsky, CRCGV, SVM, GFMC, HH variational, EIHH, NCSM
- A>4 few methods applicable
 - Green's Function Monte Carlo (GFMC)
 - S. Pieper, R. Wiringa, J. Carlson et al.
 - Effective Interaction for Hyperspherical Harmonics (EIHH)
 - Trento, results for ⁶Li
 - Coupled-Cluster Method (CCM), Unitary Model Operator Approach (UMOA)
 - Applicable mostly to closed shell nuclei
 - Ab Initio No-Core Shell Model (NCSM)

Ab initio no-core shell-model approach

- Goal: Solution of nuclear structure problem for light nuclei
- Many-body Schroedinger equation
 - A-nucleon wave function
- Hamiltonian

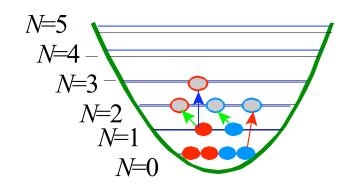
$$H|\Psi\rangle = E|\Psi\rangle$$

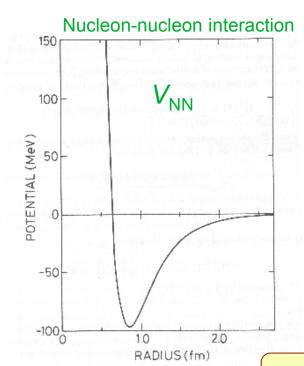
$$H = \sum_{i=1}^{A} \frac{\vec{p}_i^2}{2m} + \sum_{i< j}^{A} V_{NN}(\vec{r}_i - \vec{r}_j) \quad \left(+ \sum_{i< j< k}^{A} V_{ijk}^{3b} \right)$$

- Realistic nucleon-nucleon and three-nucleon potentials
 - Coordinate space Argonne V18, AV8', three-nucleon Tucson-Melbourne
 - Momentum space CD-Bonn, Chiral N³LO, three-nucleon chiral N²LO
- Modification by center-of-mass harmonic oscillator (HO) potential (Lipkin 1958)

$$\frac{1}{2}Am\Omega^{2}\vec{R}^{2} = \sum_{i=1}^{A} \frac{1}{2}m\Omega^{2}\vec{r_{i}}^{2} - \sum_{i< j}^{A} \frac{m\Omega^{2}}{2A}(\vec{r_{i}} - \vec{r_{j}})^{2}$$

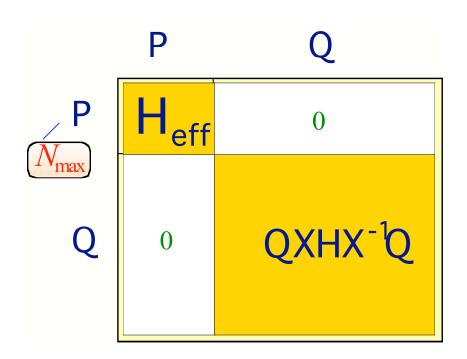
- No influence on the internal motion (in infinite space)
- Introduces mean field for sub-clusters
- Convenient to work in the HO basis


$$H^{\Omega} = \sum_{i=1}^{A} \left[\frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2} m \Omega^{2} \vec{r}_{i}^{2} \right] + \sum_{i < j}^{A} \left[V_{NN} (\vec{r}_{i} - \vec{r}_{j}) - \frac{m \Omega^{2}}{2A} (\vec{r}_{i} - \vec{r}_{j})^{2} \right] \quad \left(+ \sum_{i < j < k}^{A} V_{ijk}^{3b} \right)$$


Model space, truncated basis and effective interaction

- Strategy: Define Hamiltonian, basis, calculate matrix elements and diagonalize.

 But:
- <u>Finite</u> harmonic-oscillator Jacobi coordinate or Cartesian coordinate Slater determinant basis
 - Complete $N_{\text{max}}h\Omega$ model space


Repulsive core in V_{NN} cannot be accommodated in a truncated HO basis

Need for the effective interaction

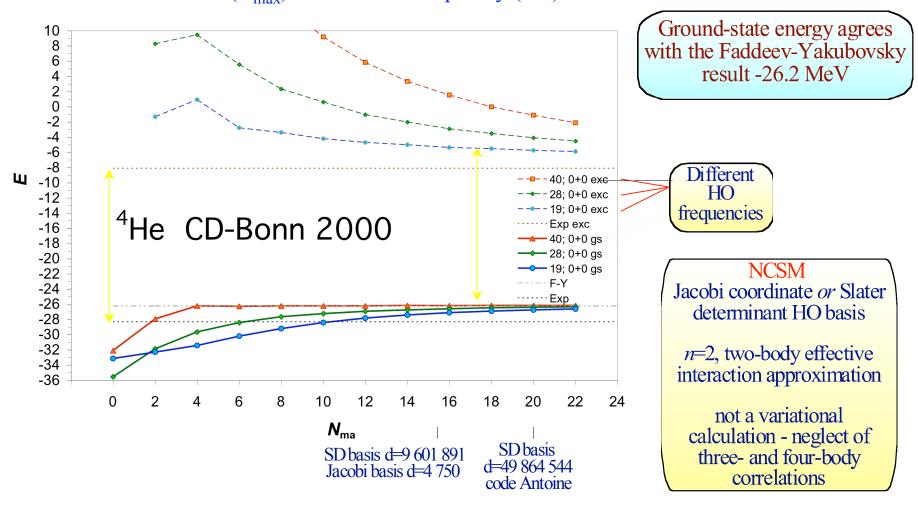
Effective Hamiltonian in the NCSM

$$H: \quad E_1, E_2, E_3, \dots E_{d_P}, \dots E_{\infty}$$

$$H_{\text{eff}}: \quad E_1, E_2, E_3, \dots E_{d_P}$$

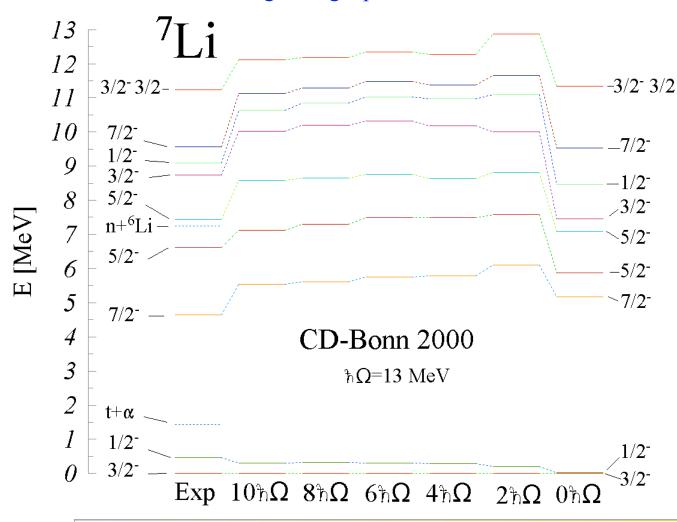
$$QXHX^{-1}P = 0$$

$$M_{\text{eff}} = PXHX^{-1}P$$


$$\text{unitary } X = \exp[-\arctan h(\omega^+ - \omega)]$$

- •Properties of $H_{\rm eff}$ for A-nucleon system
 •A-body operator
 - •Even if H two or three-body •For $P \rightarrow 1$ $H_{\text{eff}} \rightarrow H$
- n-body cluster approximation, $2 \le n \le A$
- $H^{(n)}_{eff}$ *n*-body operator
- Two ways of convergence:
 - For $P \rightarrow 1$ $H^{(n)}_{eff} \rightarrow H$
 - For $n \to A$ and fixed $P: H^{(n)}_{eff} \to H_{eff}$

Test of convergence

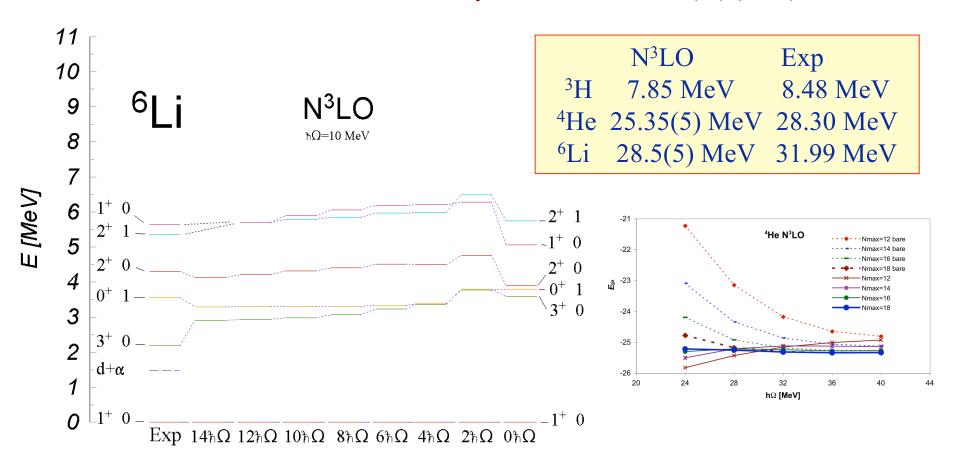

- 4He with the CD-Bonn 2000 NN interaction
- Dependence of the 0^+ 0 ground state and the 0^+ 0 excited state energies on the basis size (N_{max}) and the HO frequency $(h\Omega)$

p-shell nuclei with realistic NN forces

• Correct level ordering for light *p*-shell nuclei

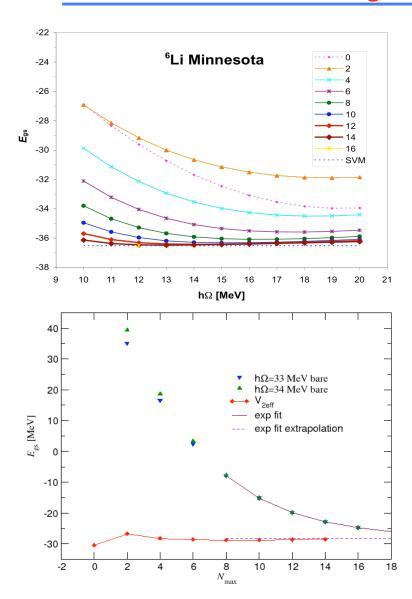
Old evaluation NPA490,1(1988) No 1/2⁻₂ and 3/2⁻₂, 7/2⁻₂ reversed

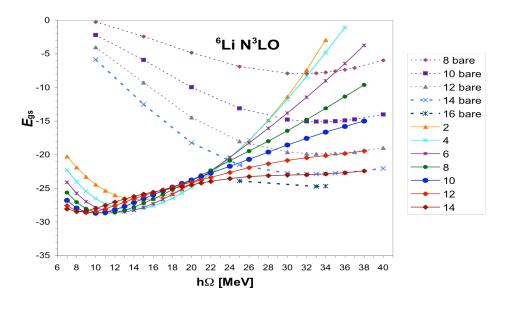
New evaluation NPA708,3(2002) introduces 1/2 and orders the states as in calculation

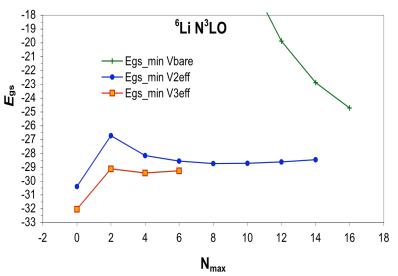

Binding energy 35.5(5) MeV

Convergence of excitation energies
Realistic NN interactions provide reasonable description of nuclear structure

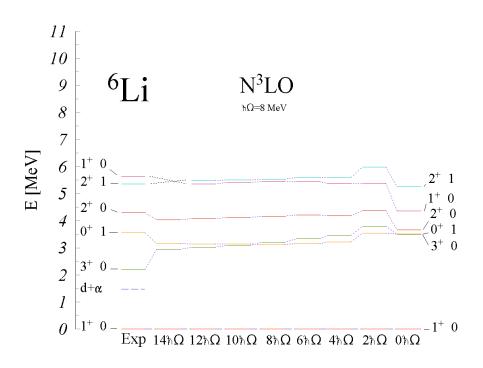
NCSM calculations with the EFT N³LO NN interaction

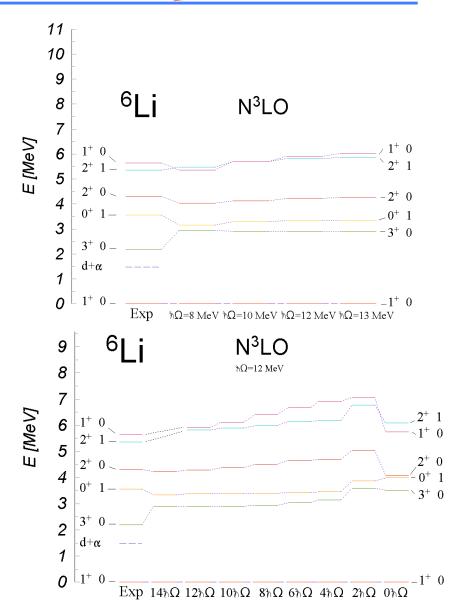

Accurate NN potential at fourth order of chiral-perturbation theory (N³LO) D. R. Entem and R. Machleidt, Phys. Rev. C **68**, 041001(R) (2003)




Converged ⁶Li excitation energies Correct level ordering, level spacing not right

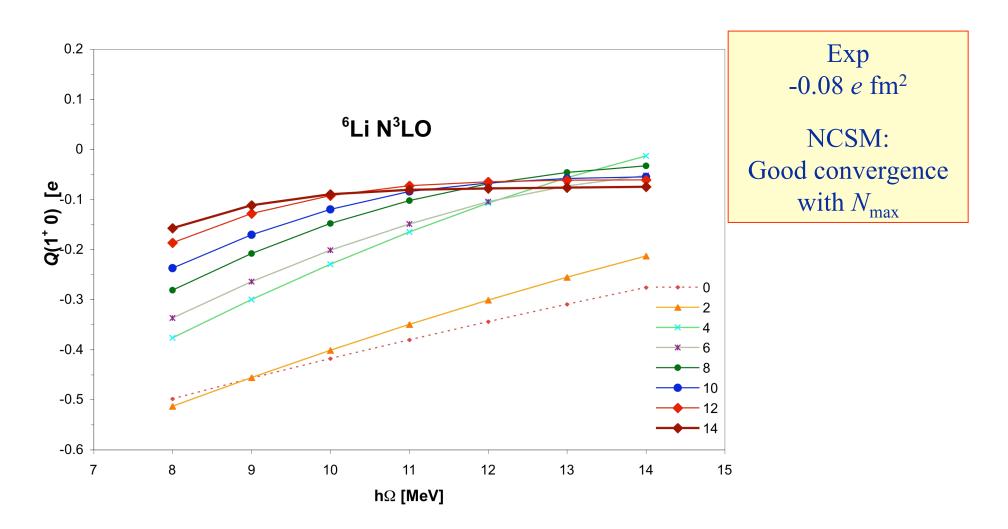
NCSM calculations with the EFT N³LO NN interaction: ⁶Li binding energy convergence



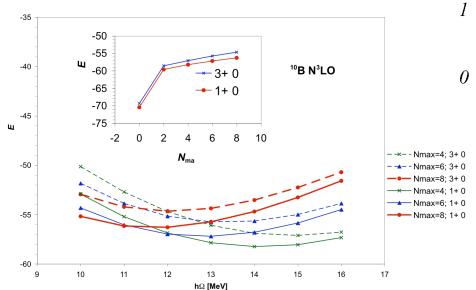

NCSM calculations with the EFT N³LO NN interaction: Convergence of ⁶Li excitation energies

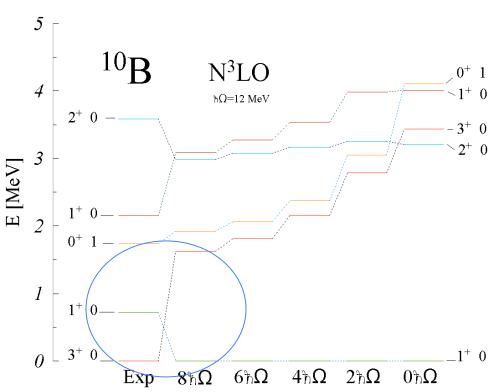
Difficult convergence of the binding energy

Good convergence of the excitation energies



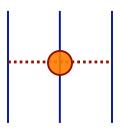
⁶Li quadrupole moment

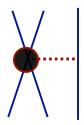

EFT N³LO NN potential

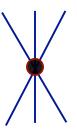


¹⁰B using N³LO NN potential

- Clearly, ground state is incorrectly predicted
- In EFT, three-nucleon interaction appears already at N²LO
 - Should be included in the Hamiltonian
 - c₁,c₃,c₄ parameters of the twopion term should be the same as those used in the N³LO NN potential
 - $c_1 = -0.81, c_3 = -3.2, c_4 = 5.4$




Binding energy 56.3(2.0) MeV


EFT N²LO three-nucleon interaction

- Two-pion exchange term
 - Used in standard TNI models
 - Fujita-Miyazawa
 - Tucson-Melbourne
 - Urbana
 - Illinois
 - Low-energy constants c₁, c₃, c₄
 - Determined by the corresponding EFT NN interaction
 - Consistent NN & TNI
- One-pion exchange plus contact term
 - Low-energy constant c_D
 - Must be determined from experiment
- Contact term
 - Low-energy constant c_E
 - Must be determined from experiment
- A regulator appears in all terms
 - Depends on cutoff parameter Λ
 - Taken consistently from that used in the corresponding EFT NN interaction

$$\exp[-(Q^2/\Lambda^2)^2]$$

Determination of the c_D and c_E low-energy constants

- Fit the ³H and ⁴He binding energies
 - Suggested and done by A. Nogga
 - Two solutions
 - 3NF-A

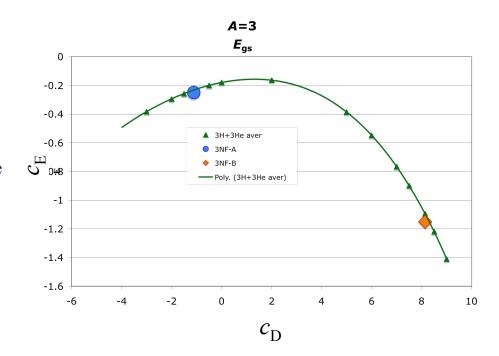
$$-c_{\rm D}$$
=-1.11

$$-c_{\rm E}$$
=-0.66

• 3NF-B

$$-c_{\rm D}=8.14$$

$$-c_{\rm E}$$
=-2.02


- Regulator depending on Jacobi coordinates
- Present work: Two-pion term local in coordinate space
 - Change regulator: depending on momentum transfer
 - Need to re-fit c_D and c_E
 - A=3 done
 - ⁴He under way
 - Presented results

- "3NFA":
$$c_D$$
=-1.11, c_E =-0.25

- "3NFB":
$$c_D$$
=8.14, c_E =-1.15

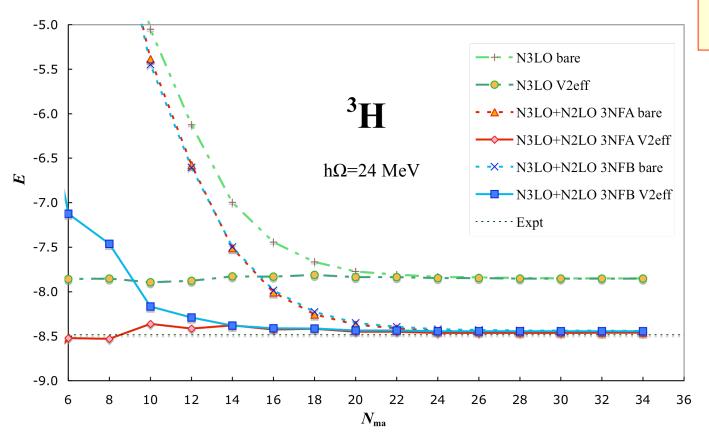
- 3NFA and 3NFB dominated by different terms
 - 3NFA two-pion term dominant
 - 3NFB one-pion term dominant
 - Contact term repulsive in both cases

$$\exp[-((p^2+q^2)/\Lambda^2)^2] \iff \exp[-(Q^2/\Lambda^2)^2]$$

$$\langle | \cdot | \cdot | \rangle = -1.09 \quad \langle | \cdot | \rangle = -0.07 \quad \langle | \cdot | \rangle = 0.25$$

$$\langle \rangle = -0.07$$

$$\langle \rangle = 0.25$$


$$\langle \rangle = -0.88$$

$$\langle \rangle = 0.37$$

Convergence for ³H with N³LO NN and N³LO NN plus N²LO three-nucleon interaction

Needed to reproduce experimental binding energy

NCSM

Jacobi coordinate HO basis

 $N^3LO NN \Leftrightarrow V_{2eff}$ $N^2LO 3NF \Leftrightarrow bare$

Paves the way for including the V_{3b} in the NCSM p-shell calculations

Realistic three-nucleon interaction in the NCSM

- The lowest possible approximation n=3 three-body effective interaction
- Calculations performed in four steps
 - 1) Three-nucleon solutions for all relevant n=3 JT channels with and without V_{3b}

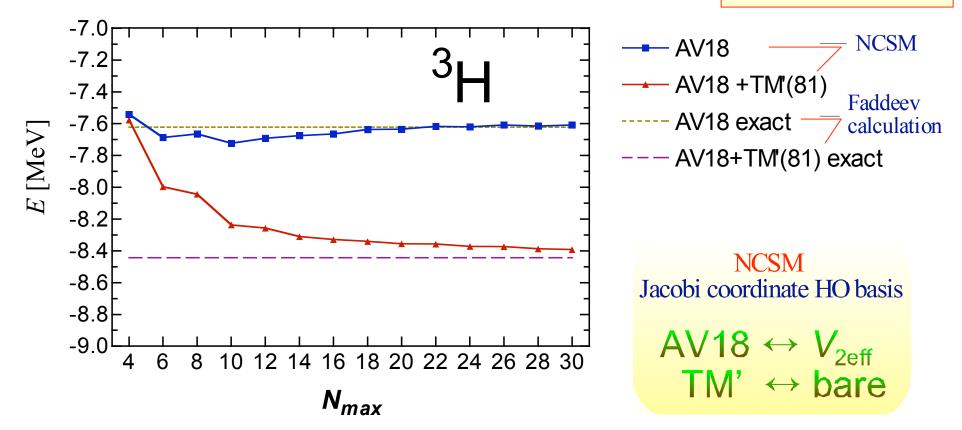
$$H^{\Omega} = \sum_{i=1}^{3} \left[\frac{\vec{p}_{i}^{2}}{2m} + \frac{1}{2} m \Omega^{2} \vec{r}_{i}^{2} \right] + \sum_{i < j}^{3} \left[V_{NN} (\vec{r}_{i} - \vec{r}_{j}) - \frac{m \Omega^{2}}{2A} (\vec{r}_{i} - \vec{r}_{j})^{2} \right] + V_{123}^{3b}$$

- 2) Three-body effective interaction by unitary transformation method
 - X₃
- 3) Effective interaction in Jacobi coordinate HO basis, p-shell nuclei calculations more efficient in Cartesian coordinate Slater determinant basis
 - transformation must be performed
- 4) A-nucleon calculation performed by a shell model code with a three-body capability
 - MFD, REDSTICK

$$h_{1} + h_{2} + h_{3} + V_{12} + V_{13} + V_{23} + V_{123} \rightarrow X_{3} \rightarrow P_{3} \left[h_{1} + h_{2} + h_{3} + V_{3eff,123}^{2b+3b} \right] P_{3} \rightarrow P \left[\sum_{i < j < k}^{A} h_{i} + \frac{1}{A-2} \sum_{i < j < k}^{A} V_{3eff,ijk}^{2b} + \sum_{i < j < k}^{A} V_{3eff,ijk}^{3b} \right] P_{3}$$

$$Step 3$$

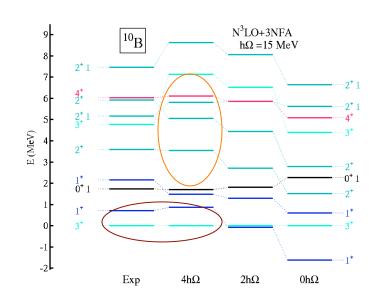
$$Tranformation$$

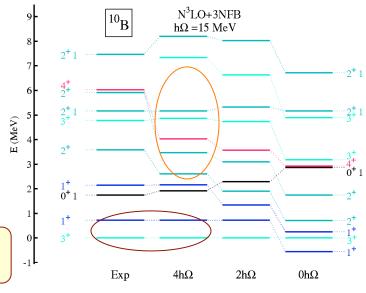

$$here$$

Convergence for ³H with a real three-body interaction

Tucson-Melbourne force

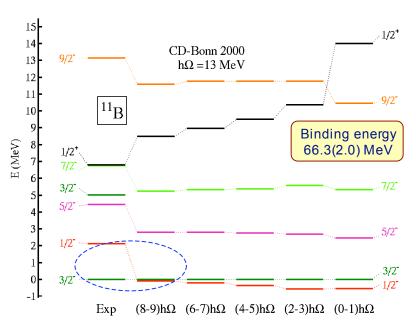
Needed to reproduce experimental binding energy

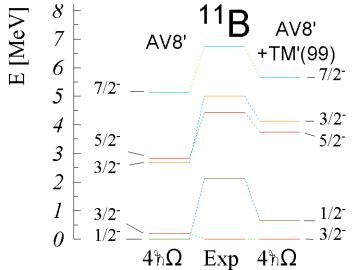



Paves the way for including the V3b in the NCSM p-shell calculations

¹⁰B using N³LO NN plus consistent N²LO TNI

- N²LO TNI 3NF-A dominated by twopion exchange term
 - Results close to the TM'
 - Smaller radius
 - Larger binding energy
 - $E_{\rm B}$ =68.36 MeV
- N²LO TNI 3NF-B dominated by onepion exchange plus contact term
 - Visible difference in particular for higher-lying terms
 - Reasonable radius
 - No overbinding
 - $E_{\rm B}$ =63.14 MeV
- $6h\Omega$ needed to check convergence of spectra
- Calculation to be re-done after proper fitting to ⁴He



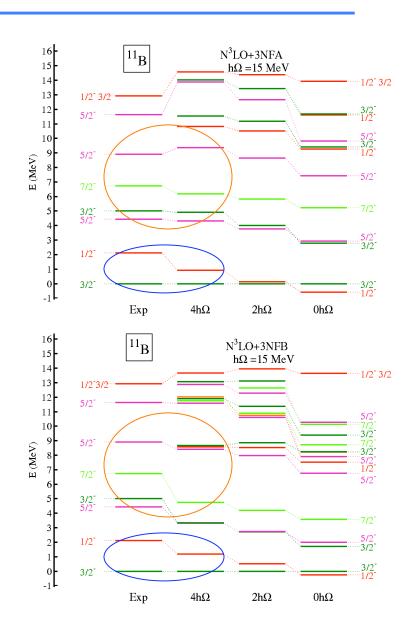


Both 3NF-A and 3NF-B resolve the ¹⁰B ground state spin problem Similarly like TM', Illinois 3NF, but unlike Urbana IX

11B with the CD-Bonn andAV8' plus Tucson-Melbourne force

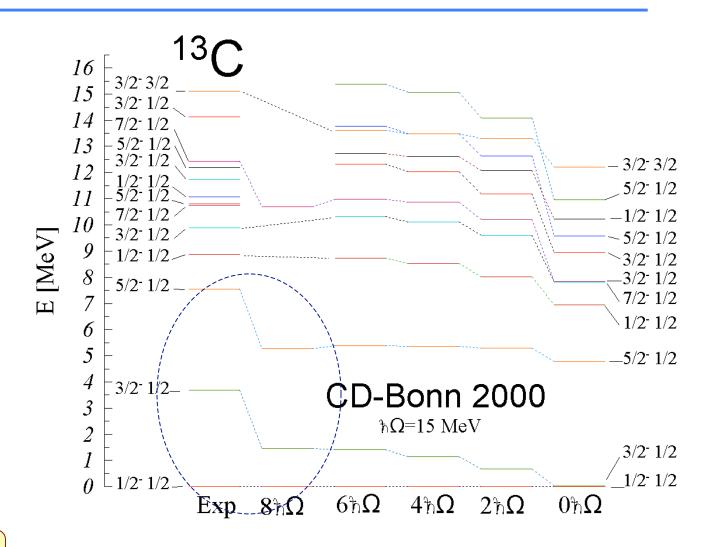
Gamow-Teller transitions $^{11}B \div ^{11}C$ $B(GT; 3/2_1^- \div J_f^-)$						
J_{f}^{-}	AV8'	AV8'+TM	'(99) Exp			
3/2 ⁻ ₁ 1/2 ⁻ ₁ 5/2 ⁻ ₁ 3/2 ⁻ ₂ 5/2 ⁻ ₂	0.765 0.909 0.353 0.531 0.197	0.315 0.591 0.517 0.741 0.625	0.345 0.440 0.526 0.525 0.461			

New (³He,t) experiment at RCNP Osaka, Y. Fujita *et al.*, PRC **70**, 011306(R) (2004).


V_{3b}: Bad description of ¹¹B greatly improved

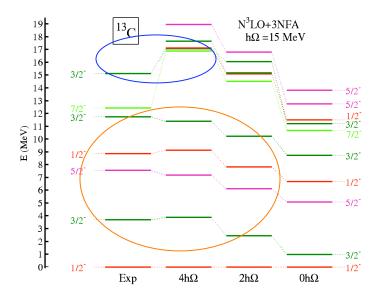
¹¹B using N³LO NN plus consistent N²LO TNI

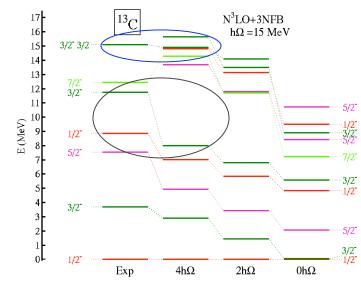
- N²LO TNI 3NF-A dominated by two-pion exchange term
 - Results close to the TM'
 - Better agreement for higher-lying states
 - Smaller radius
 - Larger binding energy
 - $E_{\rm B}$ =82.68 MeV
- N²LO TNI 3NF-B dominated by one-pion exchange plus contact term
 - Visible difference in particular for higher-lying terms
 - Better agreement for lowest states
 - Reasonable radius
 - No overbinding
 - $E_{\rm B}$ =76.22 MeV
- $6h\Omega$ needed to check convergence of spectra
- Calculation to be re-done after proper fitting to ⁴He


Both 3NF-A and 3NF-B predict correct level ordering of lowest states of ¹¹B, similarly like TM'

¹³C using the CD-Bonn NN potential

- Large basis calculation
- Complex spectrum
- Correct level ordering for 5 lowest states
- Good convergence of excitation energies
- Level spacing incorrect


Binding energy 86.5(2.0) MeV


¹³C using N³LO NN plus consistent N²LO TNI

- N²LO TNI 3NF-A dominated by two-pion exchange term
 - Results close to the TM'
 - Larger binding energy
 - $E_{\rm B}$ =112.6 MeV
 - Smaller radius
 - Better agreement for low-lying states
 - Issue of convergence
- N²LO TNI 3NF-B dominated by one-pion exchange plus contact term
 - Visible difference in particular for higherlying terms
 - No overbinding
 - $E_{\rm B}$ =103.2 MeV
 - Reasonable radius
 - Better agreement for T=3/2 states
 - 3/2⁻₂ appears to be underpredicted
- 6h Ω needed to check convergence of spectra
- Calculation to be re-done after proper fitting to ⁴He

Both 3NF-A and 3NF-B improve level spacing of lowest states of ¹³C, compared to CD-Bonn

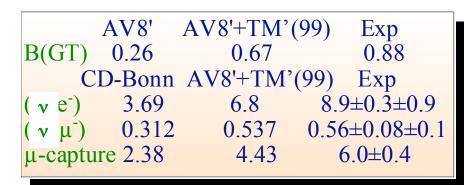
First *p*-shell nuclei results with EFT based NN plus consistent NNN interaction

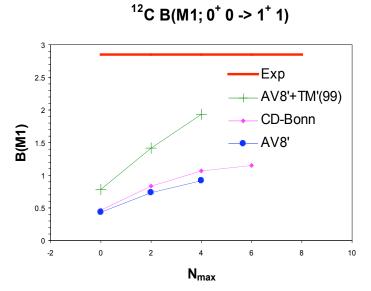
- N³LO NN potential by D. Entem and R. Machleidt
- N²LO three-nucleon interaction with consistent c_1 , c_3 , c_4 and Λ
 - c_D and c_E terms determined as suggested by A. Nogga to reproduce A=3,4 binding energies
- Two solutions: 3NF-A, 3NF-B
 - Predict different spectra as well as binding energies, radii, and electromagnetic properties
 - Both solve major issues like level ordering of lowest states
 - Neither give a perfect agreement with experiment and it is not straightforward to judge which is preferable at this point
 - Most important issue is improvement of convergence
 - θ 6hΩ calculations within reach
- One-pion and contact terms important: 3NF-A and 3NF-B improves TM' results
 - No overbinding, larger radii
 - Level ordering of lowest states the same
 - Fine details: Spectra similarly (in)accurate
- N³LO LEC c_1 , c_3 , c_4 different from those used in TM'(99), also different from those given by Rentmeester *et al*.
 - Worth-investigating different sets of LEC in the TNI

TM'
$$\Leftrightarrow$$
 N²LO

$$a' = \frac{4m_{\pi}^2 c_1}{f_{\pi}^2}$$

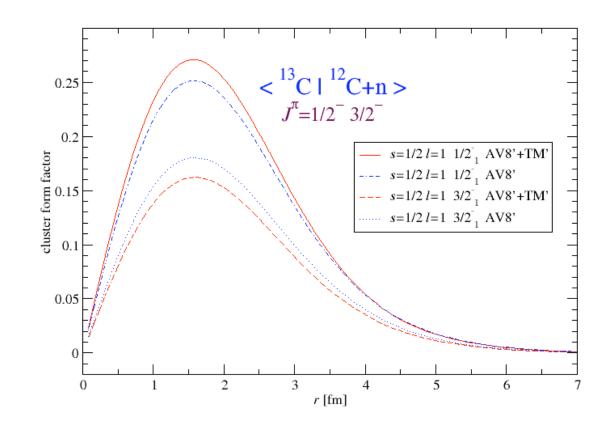
$$b = \frac{2c_3}{f_\pi^2}$$


$$d = -\frac{c_4}{f_\pi^2}$$


	c_1	c_3	c_4
Entem	-0.81	-3.20	5.40
Rentmeester	-0.76	-4.78	3.96
TM'(99)	-0.93	-4.55	2.44

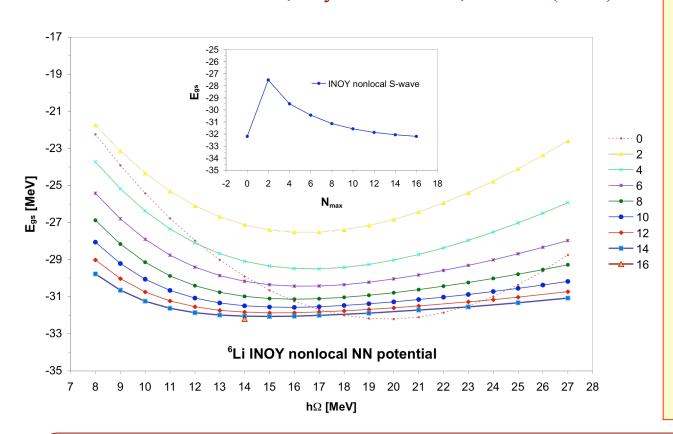
Neutrino scattering on ¹²C

- Exclusive $0^+ 0 \rightarrow 1^+ 1$ cross section & transistions
- Extremely sensitive to the spin-orbit interaction strength
 - B(GT) (B(M1)) στ,
 - No spin-orbit 0+0 and 1+1 in different SU(4) irreps
 - no transition
 - 12 C ground state 8 nucleons in $p_{3/2}$
 - Transition overestimated by a factor of six
- NCSM no fit, no free parameters
 - V_{2b} up to $6h\Omega$ saturation
 - Underestimates by a factor of 2-3
 - $-V_{2b}+V_{3b}$ up to $4h\Omega$
 - Significant improvement
 - Different processes dominated by different Q
 - Correlation with M1 transverse form factor



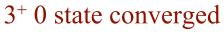
 $V_{
m 3b}$ increases the strength of the spin-orbit force

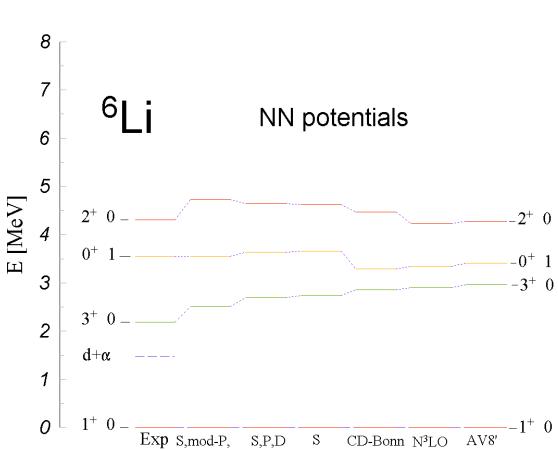
Cluster form factors for $\langle ^{13}C \mid ^{12}C+n \rangle$

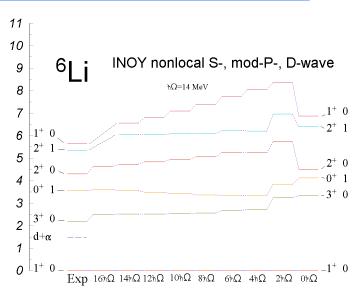

- Effects of the TNI on the $\langle ^{13}C \mid ^{12}C+n \rangle$ overlap integrals
 - Increases $J^{\pi}=1/2^{-}$ cluster form factor and spectroscopic factor
 - Reduces $J^{\pi}=3/2^{-}$ cluster form factor and spectroscopic factor
- Stronger spin-orbit interaction due to the TNI

NCSM binding energy calculations with INOY NN potentials

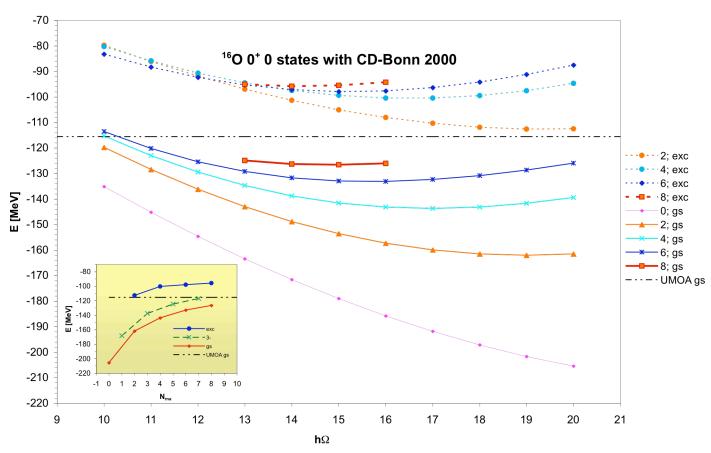
P. Doleschall et al., Phys. Rev. C 67, 064005 (2003)




```
E[MeV] INOY S
                         Exp
    ^{3}H
            8.47(1)
                         8.48
    ^{3}He 7.71(1)
                        7.72
    <sup>4</sup>He 29.1(2)
                        28.30
           32.3(3)
    6Li
                        31.99
    <sup>6</sup>He 29.1(5)
                        29.27
    <sup>7</sup>Li 38.9(8)
                       39.25
    <sup>7</sup>Be 37.2(8)
                       37.60
    <sup>8</sup>Li 39.9(1.2) 41.28
    <sup>8</sup>B 36.1(1.2) 37.74
   <sup>9</sup>Be 56.1(1.5) 58.16
    <sup>10</sup>B 62.5(2.0) 64.75
    <sup>12</sup>C 93.5(2.5) 92.16
   <sup>16</sup>O 138.0(4.0) 127.6
```


Binding energies much closer to experiment than for standard NN potentials However, isospin dependence problematic: ⁴He, ¹²C, ¹⁶O overbound; ⁸B, ⁸Li underbound Radii typically underestimated (⁴He: *r*=1.39 fm)

⁶Li spectrum sensitive to the NN potential


INOY nonolocal NN potential with modified triplet P-waves:

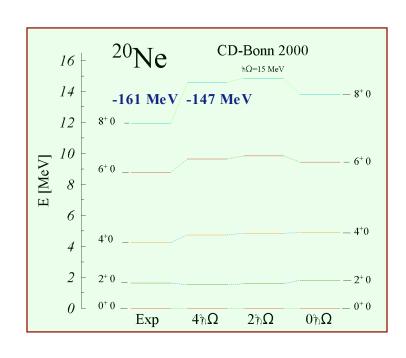
Best agreement with experiment

Very similar effect as adding three-nucleon interaction to standard NN potentials

¹⁶O ground and excited 0⁺ 0 and 3⁻ 0 states

- •Ground state changes structure
 - •0h Ω less than 50%, large 2h Ω and 4h Ω components
 - •Energy consistent with the UMOA result
- •Excited 3⁻ 0 state dominated by $1h\Omega$; follows the ground state
- •Excited 0^+ 0 state $2h\Omega$ dominated; stable
- •The $4h\Omega$ dominated state still higher in the $8h\Omega$ model space

Conclusions and outlook


- Ab initio no-core shell model
 - Method for solving the nuclear structure problem for light nuclei
 - Apart from the GFMC the only working method for A>4 at present
 - Advantages
 - applicable for any NN potential
 - Presently the only method capable to apply the QCD χ PT NN+NNN interactions to p-shell nuclei
 - Easily extendable to heavier nuclei
 - Calculation of complete spectra at the same time
 - Success importance of three-nucleon forces for nuclear structure

Work in progress

- Calculations with realistic three-body forces in the *p*-shell
 - Better determination of the three-body force itself
- Coupling of the NCSM to nuclear reactions theories
 - Direct reactions
 - Density from NCSM plus folding approaches
 - Low-energy resonant and nonresonant reactions
 - RGM-like approach
 - Exotic nuclei: RIA
 - Thermonuclear reaction rates: Astrophysics

Future plans

- Extensions to heavier nuclei
 - Effective interaction for valence nucleons
 - RIKEN, RIA

