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“Weinberg counting” works

“Weinberg counting” works ! 

The nuclear potential can be expanded according to a power counting and the 
Schrödinger equation needs to be solved non-perturbatively   

1) results are in a good (and with each order improving) agreement with NN,   
   3N, ... data (Ordóñez et al. PRC 53, 2086
                 Epelbaum et al. NPA 671, 295; NPA 747,632
                 Entem et al. PRC 68, 041001)

2) extraction of LEC’s from πN and NN data agree well
 (Büttiker et al. NPA 668, 97 & Rentmeester et al. PRC 67, 044001)

Cutoffs are needed to regularize the Schrödinger equation.
Here we want to quantify the dependence of observables (phase shifts) on these cutoffs
in LO, namely with 1π exchange.

Are the NN phase shifts cutoff independent?
Is Weinberg power counting consistent in LO in the 3N system?
Do 3NF need to be promoted to higher orders as in pionless EFT?



Where and why are results cutoff dependent?

3

where mπ is the pion mass. The strength of OPE is
completely determined by the axial-coupling constant
gA = 1.26 and the pion-decay constant fπ = 92.4 MeV.

In addition to pion exchanges, there exist in EFT
short-range interactions that represent high-energy de-
grees of freedom that have been integrated out. The
simplest are two contact interactions

Vc =
4π

(2π)3
(cs Ps + ct Pt) , (3)

where we used the projectors on spin-triplet and spin-
singlet states, Pt and Ps. The two strength parameters
cs and ct need to be determined from NN data. They
are related to the scattering lengths in their respective
channels. It is usual to write

cs = C0 + m2
πD2 + . . . , (4)

where both parameters C0 and D2 are independent of
the quark masses.

For the numerical solution of the LS equation, we need
to introduce a cutoff Λ. Low-energy physics should, of
course, be independent of the choice or regulator. It is
convenient for the partial-wave decomposition to perform
the regularization using momentum cutoff functions de-
pending on "p and "p ′ rather than on "q. Here we use

f(p′, p) = e−(p4+p′ 4)/Λ4

. (5)

Note that this leads to nonlocal interactions in configura-
tion space, but guarantees that contact interactions act
in specific partial waves, independent of Λ. The aim is to
study the dependence of observables on the chosen value
for Λ.

B. Configuration space

*** Here we could add a description of the configu-
ration space calculation incl regularization. Then the
following probably needs to be rewritten.

For the following discussion, it is useful to look also at
the configuration space expression for OPE,

V1π("r) =
m3

π

12π

(
gA

2fπ

)2

τ 1 · τ 2 [T (r) S12 + Y (r) "σ1 · "σ2] ,

(6)
where

T (r) =
e−mπr

mπr

[
1 +

3

mπr
+

3

(mπr)2

]
,

Y (r) =
e−mπr

mπr
, (7)

and the tensor spin operator is

S12 = 3("σ1 · r̂)("σ2 · r̂) − "σ1 · "σ2. (8)

In this form it is easy to identify the tensor compo-
nent T (r) as the part responsible for the singularity of
the interaction. The tensor force vanishes in spin s = 0
channels. Table ?? summarizes the matrix elements of
the S12 τ 1 · τ 2 operator in s = 1 channels.

t s = 1 l = j − 1 l = j l = j + 1

t = 1 l′ = j − 1 −2 j−1
2j+1 0 6

√
j(j+1)

2j+1

l′ = j 0 2 0

l′ = j + 1 6
√

j(j+1)

2j+1 0 −2 j+2
2j+1

t = 0 l′ = j − 1 6 j−1
2j+1 0 −18

√
j(j+1)

2j+1

l′ = j 0 −6 0

l′ = j + 1 −18
√

j(j+1)

2j+1 0 6 j+2
2j+1

TABLE I: Matrix element of the S12 τ 1 · τ 2 operator for spin
s = 1 channels with total angular momentum j. The ma-
trix elements depend on isospin t, and incoming and outgoing
angular momentum l and l′.

III. NUCLEON-NUCLEON PHASE SHIFTS

We have performed a partial-wave decomposition of
the interaction described in the previous section and then
solved the LS equation and extracted phase shifts. The
explicit expressions are summarized in the Appendix.

*** or given in any publication.
We study the cutoff dependence of the phase shifts

in leading order (LO) in Weinberg’s power counting. We
consider Λ in a wide range, between 2 fm−1 and 20 fm−1.

Because the regulator only depends on the magnitude
of the relative momenta, it does not influence the partial-
wave decomposition. In particular, this implies that Vc

only acts in S waves for any cutoff Λ. We fit cs and ct

using the 1S0 and 3S1 phase shifts at 10 MeV. We con-
firm the cutoff independence found in Refs. [? ? ], as
can been seen in Figs. ?? and ??. In Fig. ?? we show the
running of cs with the cutoff Λ, and the resulting cutoff
dependence of the 1S0 phase shifts at various laboratory
energies. In Fig. ?? we show the corresponding results for
ct, and the 3S1 and 3D1 phase shifts and the mixing an-
gle ε1. One sees that the cutoff dependence of the phase
shifts is small for Λ >∼ 5 fm−1, but it increases as the en-
ergy increases, as expected in an EFT. It is interesting
to note that ct(Λ) displays a nice limit-cycle behavior,
similar to the 3N force in the 3N problem in pionless
EFT [? ], which is solved using a regulator similar to
ours. Since the counterterm strength behaves differently
in Ref. [? ], where a coordinate-space regulator was
employed instead, we conclude that this behavior is reg-
ulator dependent. This is in line with a similar recent
finding for a purely-central potential [? ].

The resulting phase shifts as function of the labora-
tory energy are shown in Fig. ??. In the 1S0 channel, we
recover the known strong deviation from the Nijmegen
PSA. This is related to the relatively large effective-range
parameter in this partial wave, which is not reproduced
without a two-derivative contact interaction. This prob-
lem vanishes once the latter is included in subleading or-
der (see, e.g., [? ]). In the coupled 3S1-3D1 channels, we
find an encouraging agreement between theory and data.
Note that ε1 is underpredicted, if one goes to the limit of
large Λ. In this limit the agreement with the data has,
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completely determined by the axial-coupling constant
gA = 1.26 and the pion-decay constant fπ = 92.4 MeV.

In addition to pion exchanges, there exist in EFT
short-range interactions that represent high-energy de-
grees of freedom that have been integrated out. The
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(cs Ps + ct Pt) , (3)
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singlet states, Pt and Ps. The two strength parameters
cs and ct need to be determined from NN data. They
are related to the scattering lengths in their respective
channels. It is usual to write

cs = C0 + m2
πD2 + . . . , (4)

where both parameters C0 and D2 are independent of
the quark masses.

For the numerical solution of the LS equation, we need
to introduce a cutoff Λ. Low-energy physics should, of
course, be independent of the choice or regulator. It is
convenient for the partial-wave decomposition to perform
the regularization using momentum cutoff functions de-
pending on "p and "p ′ rather than on "q. Here we use

f(p′, p) = e−(p4+p′ 4)/Λ4

. (5)

Note that this leads to nonlocal interactions in configura-
tion space, but guarantees that contact interactions act
in specific partial waves, independent of Λ. The aim is to
study the dependence of observables on the chosen value
for Λ.

B. Configuration space

*** Here we could add a description of the configu-
ration space calculation incl regularization. Then the
following probably needs to be rewritten.
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We have performed a partial-wave decomposition of
the interaction described in the previous section and then
solved the LS equation and extracted phase shifts. The
explicit expressions are summarized in the Appendix.

*** or given in any publication.
We study the cutoff dependence of the phase shifts

in leading order (LO) in Weinberg’s power counting. We
consider Λ in a wide range, between 2 fm−1 and 20 fm−1.

Because the regulator only depends on the magnitude
of the relative momenta, it does not influence the partial-
wave decomposition. In particular, this implies that Vc

only acts in S waves for any cutoff Λ. We fit cs and ct

using the 1S0 and 3S1 phase shifts at 10 MeV. We con-
firm the cutoff independence found in Refs. [? ? ], as
can been seen in Figs. ?? and ??. In Fig. ?? we show the
running of cs with the cutoff Λ, and the resulting cutoff
dependence of the 1S0 phase shifts at various laboratory
energies. In Fig. ?? we show the corresponding results for
ct, and the 3S1 and 3D1 phase shifts and the mixing an-
gle ε1. One sees that the cutoff dependence of the phase
shifts is small for Λ >∼ 5 fm−1, but it increases as the en-
ergy increases, as expected in an EFT. It is interesting
to note that ct(Λ) displays a nice limit-cycle behavior,
similar to the 3N force in the 3N problem in pionless
EFT [? ], which is solved using a regulator similar to
ours. Since the counterterm strength behaves differently
in Ref. [? ], where a coordinate-space regulator was
employed instead, we conclude that this behavior is reg-
ulator dependent. This is in line with a similar recent
finding for a purely-central potential [? ].

The resulting phase shifts as function of the labora-
tory energy are shown in Fig. ??. In the 1S0 channel, we
recover the known strong deviation from the Nijmegen
PSA. This is related to the relatively large effective-range
parameter in this partial wave, which is not reproduced
without a two-derivative contact interaction. This prob-
lem vanishes once the latter is included in subleading or-
der (see, e.g., [? ]). In the coupled 3S1-3D1 channels, we
find an encouraging agreement between theory and data.
Note that ε1 is underpredicted, if one goes to the limit of
large Λ. In this limit the agreement with the data has,

Cutoff dependence can be expected since this is a singular interaction.

No unique solution in partial waves, for which the 1/r3 part (tensor force) is attractive
                                                      (see e.g. Frank et al. RMP 43,36)

This implies that one necessarily finds dependence on the regulator in attractive triplets 

In higher partial waves, in LO, the NN interaction is the 1π exchange w/o contact 
terms.



Which triplets are attractive?

• Look at 3
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We can expect a problematic cutoff dependence in 3P0, 
3P2-

3F2, 
3D2, 

3D3-
3H3 ...

1) Are singlets and repulsive triplets cutoff independent? Is any form of renormalization
    necessary for those partial waves?

2) In which range of cutoffs are observables (phase shifts) dependent of the cutoffs?
    Is there a range of cutoffs, which is “optimal”, 
            as suggested in e.g. J. Gegelia et al., nucl-th/0403052.

τ1 · τ2 S12



Numerical approach

The calculations were performed in momentum space 
       (the most important results were confirmed in configuration space)
1π exchange

2

menta of the order of the pion mass [? ].
For smaller momenta, it is simplest to integrate out

the pion and construct a “pionless” EFT, which is very
successful within this limited range [? ]. Nevertheless,
much interesting nuclear physics is thought to take place
at momenta comparable to the pion mass. (The Fermi
momentum of isospin-symmetric nuclear matter, for ex-
ample, is about 300 MeV.)

It seems unavoidable that in this larger momentum
range pion exchange has to be iterated. It is now well
known that the renormalization of an EFT is not nec-
essarily the same as that of its non-perturbative series.
This is seen clearly in the three-body problem in the pi-
onless EFT [? ? ]. The origin of this feature lies in
the renormalization of singular potentials [? ? ]. In the
specific case of OPE, the singularity is the 1/r3 behav-
ior of the tensor force in spin-triplet channels. It has
been found that the cutoff dependence of an uncoupled
1/rn interaction in the S wave can be absorbed into one
counterterm [? ].

The renormalization of OPE in lowest waves was reex-
amined from the non-perturbative viewpoint in Refs. [?
? ]. The problem with the ultraviolet divergence propor-
tional to the pion mass squared persists in this context
[? ]. On the other hand, the divergence associated with
momenta, present in the 3S1-3D1 coupled channel, can
be absorbed into the existing leading-order counterterm
[? ? ]. With a further expansion around the chiral limit,
Weinberg’s power counting seems to be consistent in a
non-perturbative calculation [? ].

*** other literature
OPE contributes, however, also in higher partial waves.

The naive power counting does not predict leading-order
counterterms in these partial waves. However, the sin-
gularity of the tensor interaction exists in all the spin-
triplet channels. In fact, it has been argued that for an
uncoupled singular interaction boundary conditions need
to be fixed in all waves where the potential is attractive
[? ]. Therefore, cutoff dependence can be expected in
some spin-triplet channels if there are no corresponding
counterterms. There has been no study of OPE renor-
malization in this context.

Another important renormalization issue concerns few-
nucleon forces. In the pionless theory it has been shown
that consistent renormalization requires a 3N force in
leading order [? ]. This result is not necessarily in con-
tradiction with Weinberg’s power counting in the pionful
EFT, because the 3N force in the pionless theory includes
contributions that in the pionful theory are iterations of
the NN force with intermediate-state nucleons of mo-
mentum O(mπ). The two EFTs have NN interactions
with different ultraviolet behaviors. Whether OPE suf-
ficiently softens the asymptotic behavior of the 3N LS
equation is an issue that remains unresolved.

In practical approaches, the renormalization problem
has been sidestepped by choosing rather small cutoffs to
regularize the LS equation and varying them only in a
limited range [? ? ? ? ? ? ? ]. Generally, cutoff de-

pendence has been observed in higher partial waves and
assumed to be of the order of the error expected from the
truncation of the expansion. It has been argued that the
EFT involving nucleons and pions necessarily involves
a mild cutoff dependence and that cutoff values exist,
which are optimal for the convergence of the expansion
[? ? ].

A concise study of the cutoff dependence in higher NN
partial waves and in the 3N system still needs to be per-
formed. This study is the aim of this work. We seek
to quantify the cutoff dependence in lowest order and, if
possible, to identify ranges of cutoffs in which only small
variations of observables occur. We then discuss how to
absorb the cutoff dependences in a finite number of coun-
terterms. We first consider NN scattering, in which case
we work for simplicity not directly with observables but
with phase shifts from the Nijmegen PSA [? ]. We then
extend our analysis to the 3N bound state. We will re-
strict ourselves to total NN angular momentum j ≤ 4,
which is sufficient to study the 3N binding energy.

Section ?? describes the interaction and our approach
to regularize and solve the NN Schrödinger equation. In
Section ?? we identify problematic partial waves, explic-
itly show their cutoff dependence, and present countert-
erms that generate cutoff-independent phase shifts in rea-
sonable agreement with the PSA. Section ?? is devoted
to the 3N system. The implications of our findings to
power counting in nuclear chiral perturbation theory are
analysed in Section ??. Our conclusions and an outlook
are given in Section ??.

II. REGULARIZATION OF THE
LIPPMANN-SCHWINGER EQUATION

We first consider the NN problem in the center-of-
mass frame. We denote by mN the nucleon mass, by µ
the reduced mass, and by !p and !p ′ the relative momenta
before and after interaction; the momentum transfer is
!q = !p− !p ′. The relative distance between the two nucle-
ons is !r. The standard Pauli matrices in spin and isospin
space are denoted by !σi and τ i, respectively.

A. Momentum space

In our normalization for plane waves, the LS equation
in momentum space reads

T (!p ′, !p, E) = V (!p ′, !p)

+

∫
d3p′′V (!p ′, !p ′′)

1

E + iε − "p ′′2

2µ

T (!p ′′, !p, E),(1)

with V the potential.
The OPE potential is

V1π(!q) = −
1

(2π)3

(
gA

2fπ

)2

τ 1 · τ 2
(!σ1 · !q) (!σ2 · !q)

!q2 + m2
π

, (2)

3

where mπ is the pion mass. The strength of OPE is
completely determined by the axial-coupling constant
gA = 1.26 and the pion-decay constant fπ = 92.4 MeV.

In addition to pion exchanges, there exist in EFT
short-range interactions that represent high-energy de-
grees of freedom that have been integrated out. The
simplest are two contact interactions

Vc =
4π

(2π)3
(cs Ps + ct Pt) , (3)

where we used the projectors on spin-triplet and spin-
singlet states, Pt and Ps. The two strength parameters
cs and ct need to be determined from NN data. They
are related to the scattering lengths in their respective
channels. It is usual to write

cs = C0 + m2
πD2 + . . . , (4)

where both parameters C0 and D2 are independent of
the quark masses.

For the numerical solution of the LS equation, we need
to introduce a cutoff Λ. Low-energy physics should, of
course, be independent of the choice or regulator. It is
convenient for the partial-wave decomposition to perform
the regularization using momentum cutoff functions de-
pending on "p and "p ′ rather than on "q. Here we use

f(p′, p) = e−(p4+p′ 4)/Λ4

. (5)

Note that this leads to nonlocal interactions in configura-
tion space, but guarantees that contact interactions act
in specific partial waves, independent of Λ. The aim is to
study the dependence of observables on the chosen value
for Λ.

B. Configuration space

*** Here we could add a description of the configu-
ration space calculation incl regularization. Then the
following probably needs to be rewritten.

For the following discussion, it is useful to look also at
the configuration space expression for OPE,

V1π("r) =
m3

π

12π

(
gA

2fπ

)2

τ 1 · τ 2 [T (r) S12 + Y (r) "σ1 · "σ2] ,

(6)
where

T (r) =
e−mπr

mπr

[
1 +

3

mπr
+

3

(mπr)2

]
,

Y (r) =
e−mπr

mπr
, (7)

and the tensor spin operator is

S12 = 3("σ1 · r̂)("σ2 · r̂) − "σ1 · "σ2. (8)

In this form it is easy to identify the tensor compo-
nent T (r) as the part responsible for the singularity of
the interaction. The tensor force vanishes in spin s = 0
channels. Table ?? summarizes the matrix elements of
the S12 τ 1 · τ 2 operator in s = 1 channels.

t s = 1 l = j − 1 l = j l = j + 1

t = 1 l′ = j − 1 −2 j−1
2j+1 0 6

√
j(j+1)

2j+1

l′ = j 0 2 0

l′ = j + 1 6
√

j(j+1)

2j+1 0 −2 j+2
2j+1

t = 0 l′ = j − 1 6 j−1
2j+1 0 −18

√
j(j+1)

2j+1

l′ = j 0 −6 0

l′ = j + 1 −18
√

j(j+1)

2j+1 0 6 j+2
2j+1

TABLE I: Matrix element of the S12 τ 1 · τ 2 operator for spin
s = 1 channels with total angular momentum j. The ma-
trix elements depend on isospin t, and incoming and outgoing
angular momentum l and l′.

III. NUCLEON-NUCLEON PHASE SHIFTS

We have performed a partial-wave decomposition of
the interaction described in the previous section and then
solved the LS equation and extracted phase shifts. The
explicit expressions are summarized in the Appendix.

*** or given in any publication.
We study the cutoff dependence of the phase shifts

in leading order (LO) in Weinberg’s power counting. We
consider Λ in a wide range, between 2 fm−1 and 20 fm−1.

Because the regulator only depends on the magnitude
of the relative momenta, it does not influence the partial-
wave decomposition. In particular, this implies that Vc

only acts in S waves for any cutoff Λ. We fit cs and ct

using the 1S0 and 3S1 phase shifts at 10 MeV. We con-
firm the cutoff independence found in Refs. [? ? ], as
can been seen in Figs. ?? and ??. In Fig. ?? we show the
running of cs with the cutoff Λ, and the resulting cutoff
dependence of the 1S0 phase shifts at various laboratory
energies. In Fig. ?? we show the corresponding results for
ct, and the 3S1 and 3D1 phase shifts and the mixing an-
gle ε1. One sees that the cutoff dependence of the phase
shifts is small for Λ >∼ 5 fm−1, but it increases as the en-
ergy increases, as expected in an EFT. It is interesting
to note that ct(Λ) displays a nice limit-cycle behavior,
similar to the 3N force in the 3N problem in pionless
EFT [? ], which is solved using a regulator similar to
ours. Since the counterterm strength behaves differently
in Ref. [? ], where a coordinate-space regulator was
employed instead, we conclude that this behavior is reg-
ulator dependent. This is in line with a similar recent
finding for a purely-central potential [? ].

The resulting phase shifts as function of the labora-
tory energy are shown in Fig. ??. In the 1S0 channel, we
recover the known strong deviation from the Nijmegen
PSA. This is related to the relatively large effective-range
parameter in this partial wave, which is not reproduced
without a two-derivative contact interaction. This prob-
lem vanishes once the latter is included in subleading or-
der (see, e.g., [? ]). In the coupled 3S1-3D1 channels, we
find an encouraging agreement between theory and data.
Note that ε1 is underpredicted, if one goes to the limit of
large Λ. In this limit the agreement with the data has,

regularized with

is solved for Λ between 2 fm-1 and 20 fm-1.

The LS equation

This range starts for values a little bit smaller than the ones usually used and extends to 
values well beyond ΛQCD

Tll′(p, p′) = Vll′(p, p′) +
∑
l′′

∫
dp′′ p′′

2
Vll′′(p, p′′)

mN

mNE + iε − p′′2
Tl′′l′(p

′′, p′)

This study is performed using the physical π mass. 
We won’t be able to learn anything about the π mass dependence of counter terms.
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Numerically, one does not observe any cutoff dependence in singlets for large cutoffs. 

This indicates that no renormalization 
is necessary in these channels.

The speed of convergence depends 
on the energy  
(but not on the partial wave)

Singlet phase shifts

Up to 100 MeV, Λ = 3-4 fm-1 seems to be appropriate. 

Also Λ = 2.5 fm-1  leads to a reasonably independent result. 

For 190 MeV, Λ = 5-6 fm-1  insures almost converged results. 

Numerically, no inconsistency of the power counting is found in singlets. 
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Λ dependence of singlet waves



In repulsive triplets, we find the same behavior for the Λ dependence. 

Repulsive triplet phase shifts

Numerically, there is no inconsistency of 
the power counting seen in repulsive triplets.

No terms  appear which scale like Λn as was 
argued e.g. by Kaplan et al. NPB 478,629 
and recently by Gegelia et al. nucl-th/0403052
based on a perturbative calculation
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The perturbative series does not reflect the renormalization behavior for this 
non-perturbative problem (see Beane et al. NPA 700,377).

This is here confirmed for higher partial waves  and the regularization in momentum space.

But what happens for attractive triplets?
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We find the expected cutoff dependence for attractive triplet channels 

Attractive triplet phase shifts

We confirm the limit cycle 
behavior for attractive singular 
interactions 

Size and slope within the cycles 
depends on the partial wave

The slope of the “plateau region” 
also depends on the energy

3P0 is the worst case, because the variation is strongest for small cutoffs 

       and the slope is the steepest one. 

Is a renormalization possible for these partial waves?



Attractive triplet phase shifts
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Binding energies of spurious bound states

• This cutoff dependence is of course induced by spurious bound states

• For  Λ ≤ 20 fm-1, we find bound states in 3P0, 3D2 (and almost in 3P2-3F2) 

• The binding energies increase very rapidly to several hundred MeV
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Counter terms in triplet channels

The renormalization of singular interactions is possible with 
   1 counter term (boundary condition) per partial wave (see e.g. Frank et al.)

In LO, this requires the promotion of counter terms from naïvely higher orders.

We use                                                                    in P, D-waves, respectively.
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FIG. 4: Cutoff dependence of the singlet phase shifts for various partial waves. Results are given for lab energies of 10 MeV
(solid line), 50 MeV (dashed line), 100 MeV (dotted line) and 190 MeV (dash-dotted line).

to remove the cutoff dependence.

It is interesting to note that in some cases we can iden-
tify cutoff regions where the results are stable and all
bound states are deep. There are some clear plateau re-
gions, especially at lower energies. At 50 MeV, we read
off that the 3D2 phase shift in the plateau region is ≈ 9◦,
which agrees very well with the Nijmegen PSA (8.97◦).
The corresponding 3D3 phase shift, however, is too small.
The situation is even worse in the P waves. At the same
energy, for both 3P0 and 3P2 phase shifts the dependence
on the cutoff remains visible in any region of Λs.

This cutoff dependence is related to the singularity of
the interaction. It is known that an attractive singular
central potential requires a boundary condition in each
partial wave [? ]. Therefore, we propose to add to each
of the problematic triplet channels a counterterm and fit
it to experiment, say the phase shift at a certain energy.
We then show that the cutoff dependence indeed van-
ishes also for other energies. In the following, we will
illustrate this explicitly for the 3P0, 3D2, and 3P2-3F2

channels, which we consider to be the most problematic
partial waves, because bound states exist or are close to
appearing in the cutoff range we examined. This extends
the work of Refs. [29? ] to channels beyond S waves
(and to our choice of regulator).

To this aim, we add contact interactions in the 3P0

(i = 1) and 3P2-3F2 channels (i = 2) of the form

Vi =
ci

(2π)3
p′p, (9)

which in Weinberg’s counting appear at next-to-leading
(NLO) order, or O(Q2). The first D wave counterterms
are supposed to be of even higher order: they appear in
N3LO, or O(Q4). In the 3D2 channel, we use

Vd =
cd

(2π)3
p′

2
p2. (10)

Fig. 10 shows our result for the 3P0 partial wave. c1

was determined by a fit of the phase shift for a laboratory
energy of 50 MeV. The strength of the counterterm is not
bound. We varied this constant by orders of magnitude,
but could not find any further solution that describes the
phase shifts equally well. c1 exhibits a nice limit-cycle
behavior, similar to that of ct. Fig. 10 also confirms
that the resulting phase shifts at other energies are Λ
independent for Λ >∼ 8 fm−1.

Figs. 11 and 12 summarize the analogous fit results
for the 3P2-3F2 and 3D2 channels, respectively. The fits
were performed using 3P2 the phase shift at 50 MeV and
the 3D2 phase shift at 100 MeV. We confirm the Λ in-
dependence (for large Λ) in all phase shifts and mixing
parameters.
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FIG. 4: Cutoff dependence of the singlet phase shifts for various partial waves. Results are given for lab energies of 10 MeV
(solid line), 50 MeV (dashed line), 100 MeV (dotted line) and 190 MeV (dash-dotted line).

to remove the cutoff dependence.

It is interesting to note that in some cases we can iden-
tify cutoff regions where the results are stable and all
bound states are deep. There are some clear plateau re-
gions, especially at lower energies. At 50 MeV, we read
off that the 3D2 phase shift in the plateau region is ≈ 9◦,
which agrees very well with the Nijmegen PSA (8.97◦).
The corresponding 3D3 phase shift, however, is too small.
The situation is even worse in the P waves. At the same
energy, for both 3P0 and 3P2 phase shifts the dependence
on the cutoff remains visible in any region of Λs.

This cutoff dependence is related to the singularity of
the interaction. It is known that an attractive singular
central potential requires a boundary condition in each
partial wave [? ]. Therefore, we propose to add to each
of the problematic triplet channels a counterterm and fit
it to experiment, say the phase shift at a certain energy.
We then show that the cutoff dependence indeed van-
ishes also for other energies. In the following, we will
illustrate this explicitly for the 3P0, 3D2, and 3P2-3F2

channels, which we consider to be the most problematic
partial waves, because bound states exist or are close to
appearing in the cutoff range we examined. This extends
the work of Refs. [29? ] to channels beyond S waves
(and to our choice of regulator).

To this aim, we add contact interactions in the 3P0

(i = 1) and 3P2-3F2 channels (i = 2) of the form

Vi =
ci

(2π)3
p′p, (9)

which in Weinberg’s counting appear at next-to-leading
(NLO) order, or O(Q2). The first D wave counterterms
are supposed to be of even higher order: they appear in
N3LO, or O(Q4). In the 3D2 channel, we use

Vd =
cd

(2π)3
p′

2
p2. (10)

Fig. 10 shows our result for the 3P0 partial wave. c1

was determined by a fit of the phase shift for a laboratory
energy of 50 MeV. The strength of the counterterm is not
bound. We varied this constant by orders of magnitude,
but could not find any further solution that describes the
phase shifts equally well. c1 exhibits a nice limit-cycle
behavior, similar to that of ct. Fig. 10 also confirms
that the resulting phase shifts at other energies are Λ
independent for Λ >∼ 8 fm−1.

Figs. 11 and 12 summarize the analogous fit results
for the 3P2-3F2 and 3D2 channels, respectively. The fits
were performed using 3P2 the phase shift at 50 MeV and
the 3D2 phase shift at 100 MeV. We confirm the Λ in-
dependence (for large Λ) in all phase shifts and mixing
parameters.
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As expected, we obtain Λ independence for all energies. The partial wave can be 

renormalized with one counter term (The same is true in 3P2-3F2 and 3D2 and 3S1-3D1)



Counter terms in other triplet channels
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Spurious bound states in the triplet channels

We still find spurious bound states.
They are, however, deeply bound for all cutoffs. 
Obviously, they do not influence low energy phase shifts.
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Counter terms in S-wave channels

S-waves were previously investigated by Frederico et al. NPA 653,209; 
                                                                Beane et al. NPA 700, 377; 
                                                                Valderrama et al. PRC 70,044006; 
                                                                Valderrama et al. nucl-th/0504067 ...
We reconfirm that the LO counter terms absorb the cutoff dependence also for our 
momentum space regulator.
The deuteron binding energy converges to -1.92 MeV (or can be fitted to experiment).
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The fit was performed for the 3S1 phase shift at 10 MeV.



Phase shifts singlets & repulsive triplets

Phase shifts in these channels 
are complete predictions.
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All predictions are qualitatively 
similar for smaller cutoffs 
(see e.g. Epelbaum et al. 
                         NPA 671,295)
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Again the predictions are similar for smaller cutoffs. 
ε1 is now underpredicted, the prediction seems to be improved. 

The 1S0 prediction is still poor. 
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Attractive triplet phase shifts (I)

We obtain a very good prediction of the energy dependence for 3P0 !

For 3P2-3F2, the LO predictions are better for smaller cutoffs, 
      but the NLO predictions for small cutoffs are similar than the ones here.
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Attractive triplet phase shifts (II)

The increase of the cutoffs does not compromise the description of data.

For cutoffs in the plateau region, the data is well described without counter terms.
   (see especially  3D2 )



Attractive triplet phase shifts (III)
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Deuteron w/ E=2.23 MeV

• We performed a refit that reproduces the deuteron binding energy.
Phase are still well described.

Λ[fm-1 ] E [MeV] T [MeV] PD[%] AS [fm-1/2 ] η r [fm] Qd [fm2 ] n 

2 2.225 28.91 5.24 0.839 0.030 1.889 0.3005 1 
3 2.225 38.45 8.09 0.855 0.028 1.913 0.2942 1 
4 2.225 45.48 8.23 0.866 0.027 1.933 0.2827 1 
5 2.225 53.53 7.49 0.867 0.025 1.935 0.2747 1 
6 2.224 62.33 6.94 0.866 0.025 1.932 0.2704 2 
7 2.225 70.16 6.73 0.865 0.025 1.928 0.2683 2 
8 2.225 75.95 6.76 0.864 0.026 1.926 0.2676 2 
10 2.227 81.99 7.00 0.864 0.026 1.925 0.2674 2 
12 2.227 85.80 7.14 0.864 0.026 1.925 0.2675 2 
14 2.224 91.94 7.14 0.863 0.026 1.926 0.2675 2 

∞ 2.225 -- 7.88 0.8681 0.026 1.9351 0.2762 ---
Expt. 2.225 — — 0.8846 0.026 1.9671 0.2859 1 

(∞ from Valderrama et al. nucl-th/0506047)



Towards 3N: Subtracting the bound states

The spurious bound states are cumbersome in few-body calculations!
      We subtract the spurious bound states from the NN t-matrix 
      and solve the Faddeev equation with the modified one.

|η〉 = |χ〉 + t G0|χ〉

t̄ = t − |η〉
1

〈χ|G0|η〉
〈η| ,

V̄ = V + |χ〉 λ 〈χ| ,

The expectation value based on the non-subtracted potential agrees with the binding energy.

To solve the 3N problem, we need the t-matrix.
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The calculation confirms that no 3NF’s are necessary in LO.
    (The additional physics input compared to pionless EFT pays off)
The binding energy prediction is rather small, larger values are obtained for small
cutoffs. NLO will be extremely interesting to see rate of convergence  -  1S0 ?. 

E(Λ) = E0

[
1 +

(
C

Λ

)
x
]

E0 ≈ −3.6 MeV
x ≈ 1.8
C ≈ 2.54 fm−1



3N binding energy non-log-scale
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Implications for the power counting

• In principle, for arbitrary large cutoffs, we require an infinite set of counter terms
            this upsets the power counting for few-body systems, where all angular
            momenta contribute

• However, everyone agrees that we don’t need all partial waves
Can we formulate that in terms of power counting?

• What is the suppression of                   ?

• Weinberg (due to infrared enhancement):

• so pions are non-perturbative for 

This estimate agrees with Fleming et al. NPA 677,313.  

G0V

G0V =
mNQ

4π

1

f2
π

αll′

mNQ

4π

1

f2
π

αll′ > 1

Q > 100 MeV for αll′ = 1



How is V suppressed for large l?

• Can we estimate the suppression factor? 
We use Goldberger-Watson estimate for the complete infinite order interaction
 (e.g. range d = 1/mπ; non-singular).  This excludes the chiral limit!

So the range of the interaction 
guarantees that higher partial waves 
drop very quickly with l.

We can treat higher partial waves 
perturbatively and renormalization is 
possible with the available counter terms. 

tan δl =

(
Qd

l + 1/2

)2l+1

→

(
Q

mπl

)2l+1

∝ Vll

Vl+1,l+1 ≈

(
Q
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)2l 1

(l!)2
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≈
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Power counting suggestion

• In theory 

- promote a finite number of counter terms, so that a renormalization for lower 
partial waves is possible, even when it is necessary to sum  the interaction to all 
orders.

- treat high partial waves perturbatively, 
then there is no problem with the renormalization.

• In practice 
Treat π exchange non-perturbative  in all partial waves for a restricted cutoff range

- promote a finite number of counter terms, so that a renormalization for lower 
partial waves is possible, even if the interaction is summed to all orders.

- restrict the cutoff to a number, which you have before determined numerically
           (look for a plateau region)

- use your favorite code to sum to all orders, because this will not differ from the 
perturbative treatment anyway



Conclusions

• We quantitatively studied the cutoff dependence of the LO chiral interaction

- despite common believe, we did not find a renormalization problem in our numerical 
calculation in most partial waves;                                                     
non-renormalizability is related to the singularity of the interaction  
(to the quantum mechanical problem of the LS equation) 

- some (P-wave) attractive triplet channels need additional counter terms for 
renormalization, these can be promoted from naïvely higher orders

- alternatively, one finds sensible predictions for cutoffs in “plateau regions”

• We find that cutoff independence is reached for Λ slightly larger than 
the 2.5 to 3 fm-1 usually used (5 to 8 fm-1)  

• Also the 3N binding energy is Λ independent; there is no 3NF necessary in LO

• We argued that a consistent power counting requires that the interaction is treated 
perturbatively in higher partial waves and that this is possible.



Outlook

•

• NLO,NNLO results are in preparation

- In which partial waves do we observe Λ dependence?

- Does the range of “good” Λ ’s increase towards smaller values?

- What happens to the 3N binding energy?
Is the small binding energy related to the 1S0 phase only?


