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Never the twain shall meet

Oh, East is East, and West is West, and
never the twain shall meet,

Till Earth and Sky stand presently at
God’s great Judgment Seat;

But there is neither East nor West, Border,
nor Breed, nor Birth,

When two strong men stand face to face,
tho’ they come from the ends of the earth!

Rudyard Kipling, “The Ballad of East and West”
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The ballad of nuclear forces

Oh, quarks are quarks, and a σ a σ, and
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Till Earth and Sky stand presently at
God’s great Judgment Seat;
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The ballad of nuclear forces

Oh, quarks are quarks, and a σ a σ, and
never the twain should meet,

Till Earth and Sky stand presently at
God’s great Judgment Seat;

But there is neither quark nor σ, pomeron,
gluon, nor ρ;

When data’s compared to a nuclear force,
with a χ2 that’s suitably low

Kipling ad. Phillips
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EFTs and low-energy QCD scales
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• EFT( 6π): ω < mπ;

• χPT ( 6∆): ω ∼ mπ < ∆;

• χPT + ∆: ω ∼ ∆ < mρ

Each of these EFTs gives model-independent
and systematically improvable predictions within
its domain of applicability

Each can be applied in A=1 AND A=2 AND A=3 . . .
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χPT ( 6∆)

L(N, γ, π) constrained by (approximate) SU(2)L × SU(2)R

of QCD.
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χPT ( 6∆)

L(N, γ, π) constrained by (approximate) SU(2)L × SU(2)R

of QCD.

χPT is the most general L(N, π, γ) consistent with the
symmetries of QCD and the pattern of their breaking, up to
a given order in the small expansion parameter:

P ≡ p,mπ

mρ,4πfπ

p/M expansion employed: (usually) useful, not essential.

Unknown coefficients at a given order need to be
determined.
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χPT ( 6∆)

L(N, γ, π) constrained by (approximate) SU(2)L × SU(2)R

of QCD.

χPT is the most general L(N, π, γ) consistent with the
symmetries of QCD and the pattern of their breaking, up to
a given order in the small expansion parameter:

P ≡ p,mπ

mρ,4πfπ

p/M expansion employed: (usually) useful, not essential.

Unknown coefficients at a given order need to be
determined.

χPT without explicit ∆ ⇒ ω, |q| < ∆
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χPT and light nuclei

χPT: pion couples derivatively and mπ is “small”
∴ pion interactions are weak at low energy.
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χPT: pion couples derivatively and mπ is “small”
∴ pion interactions are weak at low energy.
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χPT and light nuclei

χPT: pion couples derivatively and mπ is “small”
∴ pion interactions are weak at low energy.

=⇒ NO NUCLEI!!
Weinberg (1990): employ chiral expansion for NN
potential and solve Schrödinger equation for nuclear wave
function:

(E −H0)|ψ〉 = V |ψ〉

V = V (0) + V (2) + V (3) + . . .

i.e. expanded in powers of P using χPT.
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VχPT at leading order

� +�
V = C +

g2

A

4f2
π

σ1 · qσ2 · q
q2 + m2

π

τa
1
τa
2

Singular, requires regularization and renormalization.

ECT*, Nuclear Forces and QCD, June 30, 2005 – p.7/51



VχPT at leading order

� +�
V = C +

g2

A

4f2
π

σ1 · qσ2 · q
q2 + m2

π

τa
1
τa
2

Singular, requires regularization and renormalization.

• 3S1–3D1

√
(BBSvK)

• Higher partial waves: problems (Nogga, Timmermans, van Kolck)

• Phenomenological success up to Elab = 250 MeV for
N3LO V (Machleidt, Entem; Epelbaum, Meißner, Glöckle)
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Gains over the traditional approach

• EFT guides choice of parameters needed for
description at a given level of accuracy?
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Gains over the traditional approach

• EFT guides choice of parameters needed for
description at a given level of accuracy?

• Varying cutoff → lower bounds on impact of omitted
operators

• Connection to lattice QCD becomes possible?

• Connection between πN parameters used in A=1, 2, 3

• Understand sizes of long-range parts of NN force

• Chiral expansion applies to reactions with (soft) pions
and photons, e.g. ed, πd, γd→ π0d, γd
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Outline

• Motivation: Why bother to do EFT?
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Outline

• Motivation: Why bother to do EFT?
• Connecting A=1 and 3: The role of the

Delta-isobar in πN scattering and the TPE3NI
• Why ordered that? The Delta and our

understanding of “chiral” two-pion exchange
• A way forward? The δ-expansion in γp and γd

scattering
• Conclusions
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A toy model with explicit Deltas
V. R. Pandharipande, D. P., U. van Kolck, Phys. Rev. C 71 064002 (2005)
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with ω the pion energy, and q1,2 the pion momenta
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A toy model with explicit Deltas
V. R. Pandharipande, D. P., U. van Kolck, Phys. Rev. C 71 064002 (2005)
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[σj · q1 × q2t1 · t2 + τj · t1 × t2q1 · q2]

„
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«

with ω the pion energy, and q1,2 the pion momenta

As ω → 0, OπN
j → b q1 · q2 t1 · t2 + d σj · q1 × q2 τ j · t1 × t2
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The strength of the TPE3NI
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πN amplitude at ω ≈ 0 ⇒ Delta details not important.
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The strength of the TPE3NI
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σk · q2 (Isospin) OπN

j

πN amplitude at ω ≈ 0 ⇒ Delta details not important.
Fit b and d at πN threshold
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“Delta-less” result
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The “actual” strength of the TPE3NI
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The problem

• Two results have same spin-isopsin structure;
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;

• Difference order
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• Numerically ∆ ≈ 2mπ so in 6∆ theory strength of
TPE3NI overpredicted by 33%.

• Remedied by inclusion of ω2n corrections in OπN
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Extrapolation
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• Extrapolation is over
distance mπ ≈ ∆/2
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Extrapolation

m
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∆

X

π

• Extrapolation is over
distance mπ ≈ ∆/2

• “LO” result:
b = −4

9

f2
πN∆

m2
π

4
3mπ

[

1 ±
(

mπ

∆M

)2
]

• Slow convergence: Delta-ful
theory more efficient?
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Central two-pion exchange

� +�
LO + NLO
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Central two-pion exchange

� +�
LO + NLO

VC(q) =
3g2

A

16πf 4
π

{(Polynomial)

+

[

2m2
π(2c1 − c3) − q2

(

c3 +
3g2

A

16M

)]

(2m2
π + q2)A(q)}

A(q) = 1
2q

arctan
(

q
2mπ

)

Brockmann, Kaiser, Weise 1997
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Co-ordinate spaceṼC(r)

ṼC(r) = − 1

2π2r

∫ ∞

2mπ

dµ e−µrµImVC(−iµ)
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Co-ordinate spaceṼC(r)

ṼC(r) = − 1

2π2r

∫ ∞
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+
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”

(6 + 12x + 10x2 + 4x3 + x4)

ff

; (x = mπr)
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ṼC(r) =
3g2

A

32π2f4
π

e−2x

r6



“

2c1 +
3g2

A

16M

”

x2(1 + x)2 +
g2

Ax5

32M

+
“

c3 +
3g2

A

16M

”

(6 + 12x + 10x2 + 4x3 + x4)

ff

; (x = mπr)

ECT*, Nuclear Forces and QCD, June 30, 2005 – p.16/51



Co-ordinate spaceṼC(r)
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Extractions of c3 and c4

ṼC sensitive to c3; ṼS and W̃T sensitive to c4

c1 c3 c4

πN Buttiker/Meißner −0.81(12) −4.70(1.16) 3.40(4)

πN Fettes et al. −1.23(16) −5.94(9) 3.47(5)

pp R’meester et al. −0.76(7) −5.08(28) 4.70(70)

NN R’meester et al. −0.76(7) −4.78(10) 3.96(22)

NN Entem/Machleidt −0.81 −3.4 3.4

All LECs in units of GeV−1
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χPT + ∆ for Vχ

� +�
LO
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χPT + ∆ for Vχ

� +�
LO

VC(q) =
3g4

A

32πf4
π∆

(2m2
π + q2)2A(q) + ∆∆ excitation
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χPT + ∆ for Vχ

� +�
LO

VC(q) =
3g4

A

32πf4
π∆

(2m2
π + q2)2A(q) + ∆∆ excitation

VC and WT can be obtained in χPT( 6∆) p.v. we identify:

c3 = −2c4 = − g2
A

2∆
= −2.71 GeV−1

also gives M → ∞ piece of WS Kaiser, Gersetndörfer, Weise 1998

ECT*, Nuclear Forces and QCD, June 30, 2005 – p.18/51



χPT + ∆ for Vχ

� +�
LO

VC(q) =
3g4

A

32πf4
π∆

(2m2
π + q2)2A(q) + ∆∆ excitation

VC and WT can be obtained in χPT( 6∆) p.v. we identify:

c3 = −2c4 = − g2
A

2∆
= −2.71 GeV−1

also gives M → ∞ piece of WS Kaiser, Gersetndörfer, Weise 1998

C.f. c3 = −2c4 = − g2
A∆

2(∆2−m2
π)

= −3.83 GeV−1
BKM, NPA 1997

25% discrepancy
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The Delta and orderingV : evidence
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The Delta and orderingV : evidence

#BC χ2
min #BC χ2

min

OPE 31 2026.2 29 1956.6

OPE + TPE(l.o.) 28 1984.7 26 1965.9

OPE + χTPE 23 1934.5 22 1937.8
Rentmeester et al., PRL 1999
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The Delta and orderingV : thoughts

• Better convergence in χPT with Delta?
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γp results within χPT( 6∆) at N2LO
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αp = (12.1 ± 1.1)+0.5
−0.5 × 10−4 fm3

βp = (3.4 ± 1.1)+0.1
−0.1 × 10−4 fm3

S. R. Beane, J. McGovern, M. Malheiro, D. P., U. van Kolck, PLB, 567, 200 (2003).
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Adding the Delta to χPT

L(N, π) → L(N, π,∆µ)
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Adding the Delta to χPT

L(N, π) → L(N, π,∆µ) But how to count mπ c.f. ∆?
“Small-scale expansion” (Hemmert, Holstein, et al.), count:

mπ

Λ
∼ ∆

Λ
≡ ǫ

“δ-expansion” (Pascalutsa and D.P.):
mπ

∆
∼ ∆

Λ
≡ δ.

• Consider two kinematic regions for γp scattering;

• Keep track of mπ ’s and ∆’s , then get overall counting
index of graph via mπ ∼ δ2, ∆ ∼ δ.
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δ-counting in γp for ω ∼ mπ

O(e2) : �

O(e2δ2) :���

���

∼ e2 ω2

mπ
∼ e2δ2

if ω ∼ mπ ∼ δ2.

O(e2Æ3) :���
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���
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mπ
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if ω ∼ mπ ∼ δ2.

Diagrams with no Deltas: count as in χPT but with P ∼ δ2.

O(e2Æ3) :���

ECT*, Nuclear Forces and QCD, June 30, 2005 – p.23/51



δ-counting in γp for ω ∼ mπ

O(e2) : �

O(e2δ2) :���

���

∼ e2 ω2

mπ
∼ e2δ2

if ω ∼ mπ ∼ δ2.

Diagrams with no Deltas: count as in χPT but with P ∼ δ2.

O(e2Æ3) :���
∼ e2 ω2

∆
∼ e2δ3

if ω ∼ mπ ∼ δ2.

ECT*, Nuclear Forces and QCD, June 30, 2005 – p.23/51



δ-counting in γp for ω ∼ mπ

O(e2) : �

O(e2δ2) :���

���

∼ e2 ω2

mπ
∼ e2δ2

if ω ∼ mπ ∼ δ2.

Diagrams with no Deltas: count as in χPT but with P ∼ δ2.

O(e2Æ3) :���
∼ e2 ω2

∆
∼ e2δ3

if ω ∼ mπ ∼ δ2.

First counterterms: 4π∆αNE2, 4π∆βNB2, at O(e2δ4)
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ω ∼ ∆: redcuible diagrams

� ∼ 1
ω−∆

Diverges for ω = ∆. Problem with all reducible diags.

� � �

� � �

� � � �
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ω−∆

Diverges for ω = ∆. Problem with all reducible diags.

Solution: Dyson equation

� = � +�

� =� +� Σ begins with Σ(3)
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ω ∼ ∆: redcuible diagrams

� ∼ 1
ω−∆

Diverges for ω = ∆. Problem with all reducible diags.

Solution: Dyson equation

� = � +�

� =� +� Σ begins with Σ(3)

� =� +� +� + . . .

|ω − ∆| ∼ ∆3

Λ2 ⇒ all terms ∼ δ−3 ⇒ Dress propagator.
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ω ∼ ∆: power counting

LO and NLO reducible diagrams:

����

(a) (b) (c) (d)

����

(e) (f) (g) (h)

These + Thomson term give NLO: O(e2δ−1) + O(e2)

� � �
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ω ∼ ∆: power counting

LO and NLO reducible diagrams:

����

(a) (b) (c) (d)

����

(e) (f) (g) (h)

These + Thomson term give NLO: O(e2δ−1) + O(e2)

N2LO, O(e2δ):� � �
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δ-expansion forγp: Summary

V. Pascalutsa and D. R. Phillips Phys. Rev. C 67, 0552002 (2003).

• ω ∼ mπ, as in χPT, pole graphs + pion loops ⇒ LETs;
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• ω ∼ mπ, as in χPT, pole graphs + pion loops ⇒ LETs;

• ω ∼ ∆, dominated by dressed Delta with width:

Γ(s) =
h2

A

2f 2
π

s+M 2 −m2
π

24πM 2
∆

k3θ(k)
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• To describe 0 < ω ≤ ∆ amplitude includes all
mechanisms which are NLO in either region;
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• ω ∼ mπ, as in χPT, pole graphs + pion loops ⇒ LETs;

• ω ∼ ∆, dominated by dressed Delta with width:

Γ(s) =
h2

A

2f 2
π

s+M 2 −m2
π

24πM 2
∆

k3θ(k)

• To describe 0 < ω ≤ ∆ amplitude includes all
mechanisms which are NLO in either region;

• Tools of QFT: WTIs, correct # of spin d.o.f., . . .
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δ-expansion forγp: Summary

V. Pascalutsa and D. R. Phillips Phys. Rev. C 67, 0552002 (2003).

• ω ∼ mπ, as in χPT, pole graphs + pion loops ⇒ LETs;

• ω ∼ ∆, dominated by dressed Delta with width:

Γ(s) =
h2

A

2f 2
π

s+M 2 −m2
π

24πM 2
∆

k3θ(k)

• To describe 0 < ω ≤ ∆ amplitude includes all
mechanisms which are NLO in either region;

• Tools of QFT: WTIs, correct # of spin d.o.f., . . .

• Power counting ⇒ error estimates
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Results: parameters
Fit to γp data from threshold to ∼ 300 MeV
Free parameters: hA, gM , gE

Γ(M 2
∆) = 111 MeV → hA=2.81

gM = 2.6 ± 0.2, gE = −6.0 ± 0.9
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c.f. large-Nc, hA = 3√
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√
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(1 + κp) ≈ 2.63;
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Results: parameters
Fit to γp data from threshold to ∼ 300 MeV
Free parameters: hA, gM , gE

Γ(M 2
∆) = 111 MeV → hA=2.81

gM = 2.6 ± 0.2, gE = −6.0 ± 0.9

c.f. large-Nc, hA = 3√
2
gA ≈ 2.67, gM = 2

√
2

3
(1 + κp) ≈ 2.63;

Reference αp βp

NLO HBχPT 12.2 1.2

NLO δ 10.2+4.2
−2.0 3.9+2.7

−0.4

NLO SSE 16.4 9.1

PDG average 12.0 ± 0.7 1.6 ± 0.6

Beane et al. 12.1 ± 1.6 3.2 ± 1.2
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Results: parameters
Fit to γp data from threshold to ∼ 300 MeV
Free parameters: hA, gM , gE

Γ(M 2
∆) = 111 MeV → hA=2.81

gM = 2.6 ± 0.2, gE = −6.0 ± 0.9

c.f. large-Nc, hA = 3√
2
gA ≈ 2.67, gM = 2

√
2

3
(1 + κp) ≈ 2.63;

Reference αp βp

NLO HBχPT 12.2 1.2

NLO δ 10.2+4.2
−2.0 3.9+2.7

−0.4

NLO SSE 16.4 9.1

PDG average 12.0 ± 0.7 1.6 ± 0.6

Beane et al. 12.1 ± 1.6 3.2 ± 1.2

Large ∆/M corrections to spin polarizabilities, Pascalutsa and D.P., PRC 68, 055205.
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Results: I
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Results: II
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Results: II
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Results: III
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Compton scattering on deuterium

Want to determine αN and βN . Naive idea:

� +

�
Aγp Aγn

�
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Compton scattering on deuterium

Want to determine αN and βN . Naive idea:

� +

�
Aγp Aγn

INCORRECT

�
Possible to extract αN and βN from γd→ γd data,

but need to treat 2B effects SYSTEMATICALLY.
ECT*, Nuclear Forces and QCD, June 30, 2005 – p.31/51



γd in χPT to O(e2P )

S. R. Beane, M. Malheiro, D. P., U. van Kolck, Nucl. Phys. A656, 367 (1999)

O(e2) :�

O(e2P ) :���

���
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γd in χPT to O(e2P )

S. R. Beane, M. Malheiro, D. P., U. van Kolck, Nucl. Phys. A656, 367 (1999)

O(e2) :�
O(e2P ) :���

���

No free parameters at O(e2P ) ⇒ PREDICTION
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Results
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Best-fit results atO(e2P 2)
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γd with explicit Deltas
R. Hildebrandt, H. Grießhammer, T. Hemmert, D.P., Nucl. Phys. A (2005)

• Calculation to NLO in χPT + ∆’s

• αhigh and βhigh promoted by one order, use values from
fit to γp scattering

αp = 11.04 × 10−4 fm3, βp = 2.76 × 10−4 fm3
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γd with explicit Deltas
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A couple of pertinent details
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Energy dependence is an issue (esp. at fwd. angles):
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Conclusions

• χPT( 6∆) expansions may converge only slowly if the
Delta is not explicitly included;

• Sometimes it’s 2∆ vs. ∆: ed scattering
√

• Connections of πN parameter extractions in A = 1, 2, 3?

• SSE: mπ ∼ ∆ ⇒ Delta-effects are perturbative

• δ-expansion ⇒ Resum for ω ∼ ∆: works well for γp.

• To do: photoproduction, πN, . . .

• Applicable to NN at higher energies?

Thanks to the US DoE for financial support
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Dressing the∆ propagator

S(0)
µν (p) = −P (3/2)

µν (p)

6p−M∆
+ non spin − 3/2 pieces

Σµν = Σ(3)
µν + Σ(4)

µν + . . .

Treat Σ(4) etc. in perturbation theory
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Dressing the∆ propagator

S(0)
µν (p) = −P (3/2)

µν (p)

6p−M∆
+ non spin − 3/2 pieces

Σµν = Σ(3)
µν + Σ(4)

µν + . . .

Treat Σ(4) etc. in perturbation theory

Consistent couplings ⇒ Σµν(p) = Σ(p)P (3/2)
µν (p)

Resum renormalized third-order self-energy

S̃µν(p) = − Z(p2)

6p−M(p2)
P (3/2)

µν (p)

= − Z(M 2
∆)

6p−M∆ − i Im M(p2)
P (3/2)

µν (p) + O

(

1

Λ

)
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Consistent couplings

L invariant under ∆µ → ∆µ + ∂µǫ

⇒ ∆ has correct number of spin degrees of freedom

�
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Consistent couplings

L invariant under ∆µ → ∆µ + ∂µǫ

⇒ ∆ has correct number of spin degrees of freedom

Spin-3/2 gauge invariance ⇒ pµΓµ(p, . . .) = 0

�
ΓµSµν(p)Γ

ν = −ΓµP (3/2)
µν (p)Γν

6p−M∆
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Consistent couplings

L invariant under ∆µ → ∆µ + ∂µǫ

⇒ ∆ has correct number of spin degrees of freedom

Spin-3/2 gauge invariance ⇒ pµΓµ(p, . . .) = 0

�
ΓµSµν(p)Γ

ν = −ΓµP (3/2)
µν (p)Γν

6p−M∆

Unphysical spin-1/2 degrees of freedom do not
enter any physical amplitude
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GC using factorization

GC

G
(s)
E

= 〈ψ|e|ψ〉 + 〈ψ|J (3)
0 |ψ〉 +O(eP 4)
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Parameter-free prediction: tests χPT’s deuteron.
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GQ
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GM
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J+: more sensitive to short-distance contributions than J0.
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Wave-function dependence
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