

Electromagnetic two-body breakup of ⁴He

S. Quaglioni, D. Andreasi, V. D. Efros, W. Leidemann, and G. Orlandini

ECT* Trento: June 24th 2005

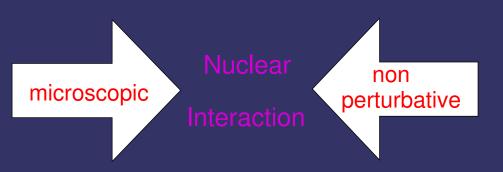
Outline of the Talk

- ullet Quest for a fundamental NN interaction
- Two–fragment reactions through LIT
- Photodisintegration
- Electrodisntegration
- Conclusions and Outlook

Quest for a fundamental NN interaction

Nucleons are composite bound states of quarks and gluons

Few Nucleon Systems



Quantum Chromo Dynamics

"Theoretical laboratory" to test nuclear force models

- structure of light nuclei
- few-nucleon scattering and reactions

A consistent treatment of both ISI and FSI is mandatory!

A=2 almost perfect description of 2N data

- A=2 almost perfect description of 2N data
- A=3 binding energies \Rightarrow local V_{NN} not sufficient!
 - → off—shell effects!
 - → 3NF forces? Non local terms?

- A=2 almost perfect description of 2N data
- A=3 binding energies \Rightarrow local V_{NN} not sufficient!
 - → off—shell effects!
 - → 3NF forces? Non local terms?
 - scattering observables \Rightarrow fundamental!
 - \longrightarrow open problems: A_y -puzzle, . . .
 - find reaction observables sensitive to 3NF: inclusive or exclusive?

Total electrodisintegration of ³He: Role of 3NF

Longitudinal Response

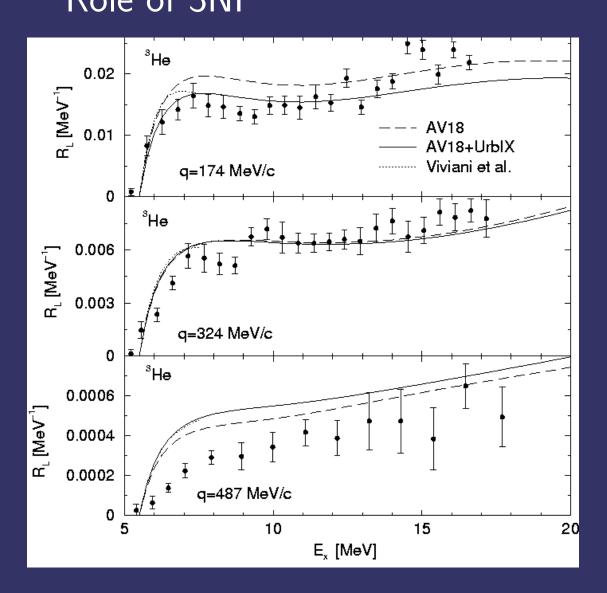
low energy

--- AV18 --- AV18+UIX

CHH

Efros, Leidemann, Orlandini, Tomusiak PRC69(2004)044001

-- Retzlaff *et al.*, PRC49(1994)1263



Exclusive ${}^{3}\text{He}(\gamma, pp)n$ reaction

3NF effects

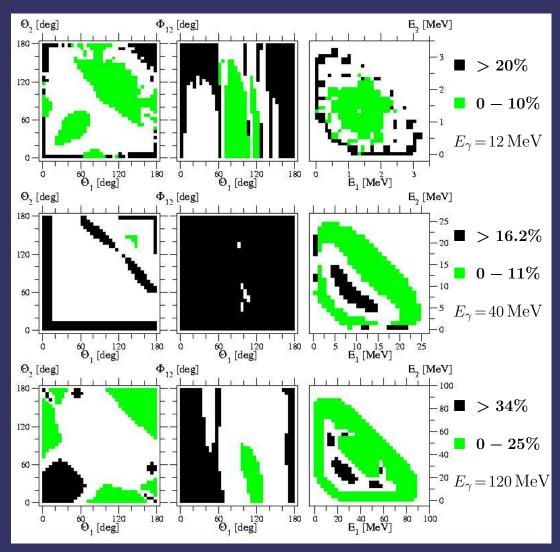
3N breakup phase–space

AV18+UIX+MEC

versus

AV18+MEC

Golak et al., nucl-th/0505072



- A=2 almost perfect description of 2N data
- A=3 binding energies \Rightarrow local V_{NN} not sufficient!
 - → off—shell effects!
 - → 3NF forces? Non local terms?
 - scattering observables \Rightarrow fundamental!
 - \longrightarrow open problems: A_y -puzzle, ...
 - find reaction observables sensitive to 3NF: inclusive or exclusive?
- A=4 a novel testground for nuclear interactions

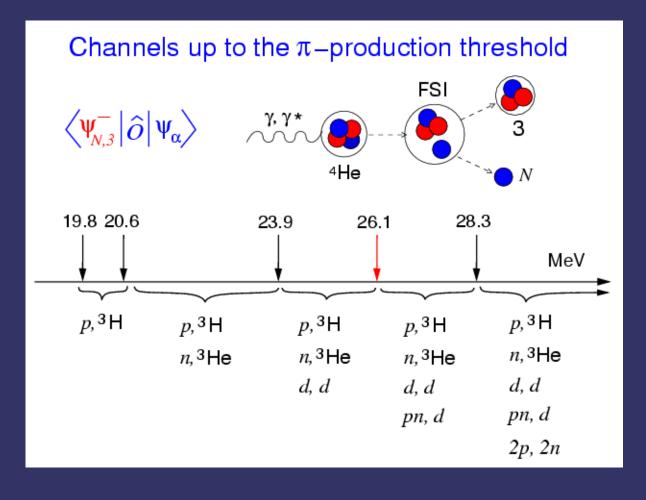
Low-energy n- 3 H scattering: A novel testground for nuclear interactions

Lazauskas, Carbonell, Fonseca, Viviani, Kievsky, Rosati, PRC71(2005)034004

- "The four-nucleon system represents a qualitative jump in complexity relative to the A=3 case ..."
- "... Unlike the A=3 systems, A=4 shows a delicate and rich structure of excited states in the continuum, whose position and width depends critically on the underlying NN interaction ..."
- "... Therefore is of the utmost importance to have reliable few-body techniques powerful enough to deal with this system ..."

Where is the challenge?

Push *ab initio* calculation of exclusive reactions of a 4-particle system, also beyond the 3-body breakup threshold



- ▲ full FSI also beyond 3bbu
- $lackbox{V}{NN}$ model:

Two-Fragment Reactions through LIT

Which theoretical technique?

The Lorentz integral transform method:

- the only feasible beyond the 3-body breakup threshold
- \triangleright already applied for inclusive reactions: $A \leq 7$
- ▶ less known in its exclusive version: first application to the 4-nucleon system

$$T_f(E_f) = \langle \Psi_f^-(E_f) | \widehat{O} | \Psi_0 \rangle$$

$$T_f(E_f) = \langle \Psi_f^-(E_f) | \widehat{O} | \Psi_0 \rangle$$

Formal solution: $\langle \Psi_f^- | = \langle \Phi_f | + \langle \Phi_f | \widehat{V} \frac{1}{E_f + i\varepsilon - \widehat{H}}$

$$T_f(E_f) = \langle \Psi_f^-(E_f) | \widehat{O} | \Psi_0 \rangle$$

Formal solution:
$$\langle \Psi_f^- | = \langle \Phi_f | + \langle \Phi_f | \widehat{V} \frac{1}{E_f + i\varepsilon - \widehat{H}}$$

PWA term: $T_f^{\text{PWA}}(E_f) = \langle \Phi_f | \widehat{O} | \Psi_0 \rangle \longrightarrow \text{rather simple}$

$$T_f(E_f) = \langle \Psi_f^-(E_f) | \widehat{O} | \Psi_0 \rangle$$

Formal solution:
$$\langle \Psi_f^- | = \langle \Phi_f | + \langle \Phi_f | \widehat{V} \frac{1}{E_f + i\varepsilon - \widehat{H}}$$

PWA term:
$$T_f^{\text{PWA}}(E_f) = \langle \Phi_f | \widehat{O} | \Psi_0 \rangle \longrightarrow \text{rather simple}$$

FSI term:
$$T_f^{\mathsf{FSI}}\left(E_f\right) = \langle \Phi_f | \widehat{V} \frac{1}{E_f + i\varepsilon - \widehat{H}} \widehat{O} | \Psi_0 \rangle$$
$$= \int \frac{F_f(E)}{E_f + i\varepsilon - E} \ dE$$

$$T_f(E_f) = \langle \Psi_f^-(E_f) | \widehat{O} | \Psi_0 \rangle$$

Formal solution:
$$\langle \Psi_f^- | = \langle \Phi_f | + \langle \Phi_f | \widehat{V} \frac{1}{E_f + i\varepsilon - \widehat{H}}$$

PWA term:
$$T_f^{\text{PWA}}(E_f) = \langle \Phi_f | \widehat{O} | \Psi_0 \rangle \longrightarrow \text{rather simple}$$

FSI term:
$$T_f^{\mathsf{FSI}}\left(E_f\right) = \langle \Phi_f | \widehat{V} \frac{1}{E_f + i\varepsilon - \widehat{H}} \widehat{O} | \Psi_0 \rangle$$

$$= \int \frac{F_f(E)}{E_f + i\varepsilon - E} dE$$

Integral Transform Approach

$$\Phi[F](\sigma) = \int F(E)K(\sigma, E)dE$$

Aim: determining F(E) via the integral transform. It means to calculate $\Phi[F](\sigma)$ without knowledge of F(E).

$$\Phi[F](\sigma) \Rightarrow \text{inversion} \Rightarrow F(E)$$

• Laplace Transform:

$$K(\sigma, E) = e^{-E\sigma}$$

Stiltjes Transform:

$$K(\sigma, E) = \frac{1}{E + \sigma}$$

o Lorentz Transform:

$$K(\sigma, E) = \frac{1}{(E - \sigma_R)^2 + \sigma_I^2}$$

Integral Transform Approach

$$\Phi[F](\sigma) = \int F(E)K(\sigma, E)dE$$

Aim: determining F(E) via the integral transform. It means to calculate $\Phi[F](\sigma)$ without knowledge of F(E).

$$\Phi[F](\sigma) \Rightarrow \text{inversion} \Rightarrow F(E)$$

• Laplace Transform:

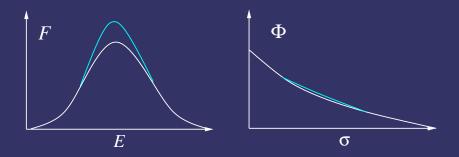
$$K(\sigma, E) = e^{-E\sigma}$$

Stiltjes Transform:

$$K(\sigma, E) = \frac{1}{E + \sigma}$$

O Lorentz Transform:

$$K(\sigma, E) = \frac{1}{(E - \sigma_R)^2 + \sigma_I^2}$$



Integral Transform Approach

$$\Phi[F](\sigma) = \int F(E)K(\sigma, E)dE$$

Aim: determining F(E) via the integral transform. It means to calculate $\Phi[F](\sigma)$ without knowledge of F(E).

$$\Phi[F](\sigma) \Rightarrow \text{inversion} \Rightarrow F(E)$$

• Laplace Transform:

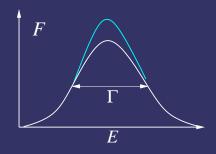
$$K(\sigma, E) = e^{-E\sigma}$$

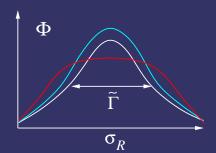
Stiltjes Transform:

$$K(\sigma, E) = \frac{1}{E + \sigma}$$

Lorentz Transform:

$$K(\sigma, E) = \frac{1}{(E - \sigma_R)^2 + \sigma_I^2}$$





The Lorentz Transform

$$L[F_f](\sigma) = \int F_f(E) \frac{1}{(E - \sigma_R)^2 + \sigma_I^2} dE$$

$$= \int \frac{\left\langle \Phi_{f} \middle| \widehat{V} \middle| \Psi_{\nu} \right\rangle \left\langle \Psi_{\nu} \middle| \widehat{O} \middle| \Psi_{0} \right\rangle \delta(E - E_{\nu})}{(E - \sigma_{R} + i\sigma_{I}) (E - \sigma_{R} - i\sigma_{I})} dE$$

$$= \int \frac{\left\langle \Phi_{f} \middle| \widehat{V} \frac{1}{E_{\nu} - \sigma^{*}} \middle| \Psi_{\nu} \right\rangle \left\langle \Psi_{\nu} \middle| \frac{1}{E_{\nu} - \sigma} \widehat{O} \middle| \Psi_{0} \right\rangle$$

$$= \int \frac{\left\langle \Phi_{f} \middle| \widehat{V} \frac{1}{H - \sigma^{*}} \middle| \Psi_{\nu} \right\rangle \left\langle \Psi_{\nu} \middle| \frac{1}{H - \sigma} \widehat{O} \middle| \Psi_{0} \right\rangle$$

$$= \left\langle \Phi_f \left| \widehat{V} \frac{1}{H - \sigma^*} \frac{1}{H - \sigma} \widehat{O} \right| \Psi_0 \right\rangle = \left\langle \widetilde{\psi}_2 \left| \widetilde{\psi}_1 \right\rangle$$

The Lorentz Transform

$$L[F_f](\sigma) = \int F_f(E) \frac{1}{(E - \sigma_R)^2 + \sigma_I^2} dE$$

$$= \left\langle \Phi_f \left| \widehat{V} \frac{1}{H - \sigma^*} \frac{1}{H - \sigma} \widehat{O} \right| \Psi_0 \right\rangle = \left\langle \widetilde{\psi}_2 \left| \widetilde{\psi}_1 \right\rangle$$

To calculate $L[F_f](\sigma)$ one doesn't need to know $F_f(E)$. Solve for many σ_R and fixed σ_I :

$$(H - \sigma_R - i\sigma_I) | \widetilde{\psi}_1 \rangle = \widehat{O} | \Psi_0 \rangle$$

$$(H - \sigma_R - i\sigma_I) | \widetilde{\psi}_2 \rangle = \widehat{V} | \Phi_f \rangle$$

 $F_f(E)$ from inversion of $L[F_f](\sigma)$: FSI included

Procedure:

- 1. choose an NN-interaction
- 2. find the excitation operator relevant to the reaction (consistent with NN-interaction)
- 3. choose a good bound-state technique
 - to solve A-body Schrödinger equation

$$(H-E_0)|\Psi_0\rangle=0$$

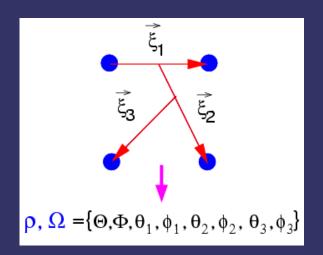
to solve A-body LIT equation

$$(H - \sigma_R - i\sigma_I)|\widetilde{\psi}\rangle = |Q\rangle$$

- 4. calculate the overlap $L[F_f](\sigma) = \langle \widetilde{\psi}_2 | \widetilde{\psi}_1 \rangle$
- 5. invert transform $L[F_f](\sigma) \longrightarrow F_f(E)$
- 6. calculate matrix element $T_f^{\mathsf{FSI}}\left(E_f\right) = \int \frac{F_f(E)}{E_f + i\varepsilon E} dE^{\mathsf{FSI}}$

Remove CM Degrees of Freedom

$$\Phi(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4) = \phi(\vec{R}_{cm}) \Psi(\vec{\xi}_1, \vec{\xi}_2, \vec{\xi}_3)$$



$$H = -\frac{1}{2m} \left(\triangle_{\rho} - \frac{\hat{K}^2}{\rho^2} \right) + \sum_{i < j}^4 v_{ij}$$

$$\hat{K}^2 \mathcal{Y}^{\mu}_{[K]}(\Omega) = K(K+7) \mathcal{Y}^{\mu}_{[K]}(\Omega)$$

Which dynamical model?

Spin dependent S-wave interaction MTI-III

$$v_{ij} = V_{31}(r)\mathcal{P}_{\sigma}^{+}\mathcal{P}_{\tau}^{-} + V_{13}(r)\mathcal{P}_{\sigma}^{-}\mathcal{P}_{\tau}^{+}$$

Total photodisintegration of ³H:

MTI-III vs AV14

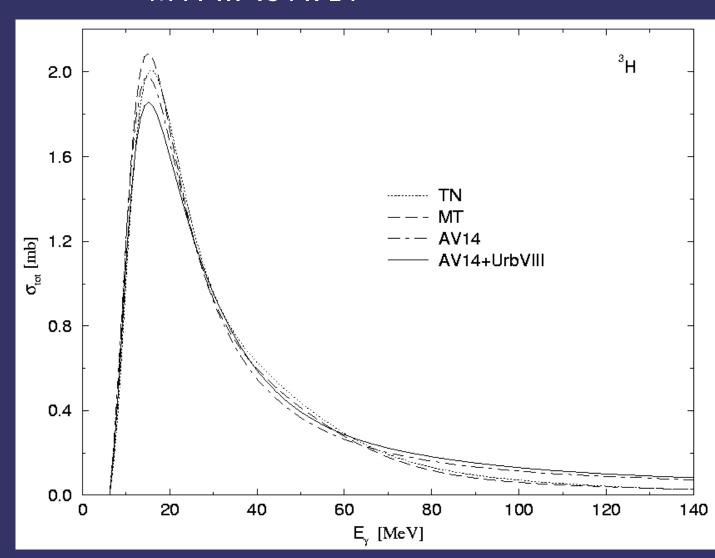
Total cross section

--- MTI-III

--- AV14

CHH

Efros, Leidemann, Orlandini, Tomusiak PLB484(2000)223



CHH Expansion Method

We seek the solutions of Schrödinger and LIT equations in the following form:

$$\begin{split} \Psi &= \sum_{n,[K]}^{n_{max},[K_{max}]} C_n^{[K]} \mathcal{J} R_n(\rho) \left[\mathcal{Y}_{[K]}^{\mu}(\Omega) \Theta_{ST}^{\bar{\mu}} \right]_{JT}^a \\ \mathcal{J} &= \prod_{i < j} f(r_{ij}) \longrightarrow \text{Jastrow factor} \\ R_n(\rho) &\sim L_n^{\nu}(\rho/\rho_0) \exp\left[-\rho/2\rho_0\right] \\ &\hookrightarrow \text{hyperradial functions} \\ \mathcal{Y}_{[K]}^{\mu}(\Omega) &\longrightarrow \text{hyperspherical harmonics} \\ \Theta_{ST}^{\bar{\mu}} &\longrightarrow \text{spin - isospin functions} \end{split}$$

Photodisintegration:

$$\gamma + {}^{4}\text{He} \to N + 3$$

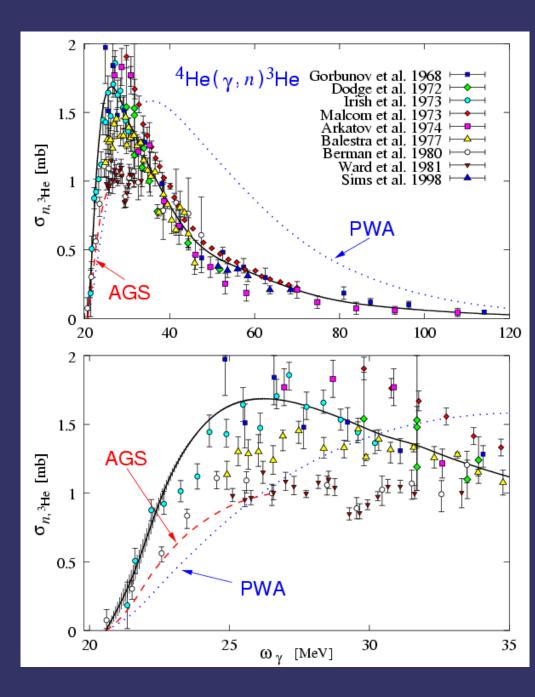
Total cross section

$$\sigma_{N,3} \propto \int |\langle \Psi_{N,3}^- | \mathbf{D} | \Psi_{\alpha} \rangle|^2 d\Omega$$

The $n,^3$ He channel \blacktriangleright

CHH

Quaglioni, Barnea, Efros, Leidemann, Orlandini, PRC69(2004)044002



Test the PWA Approximation

A simple model: Gaussian Wave Functions

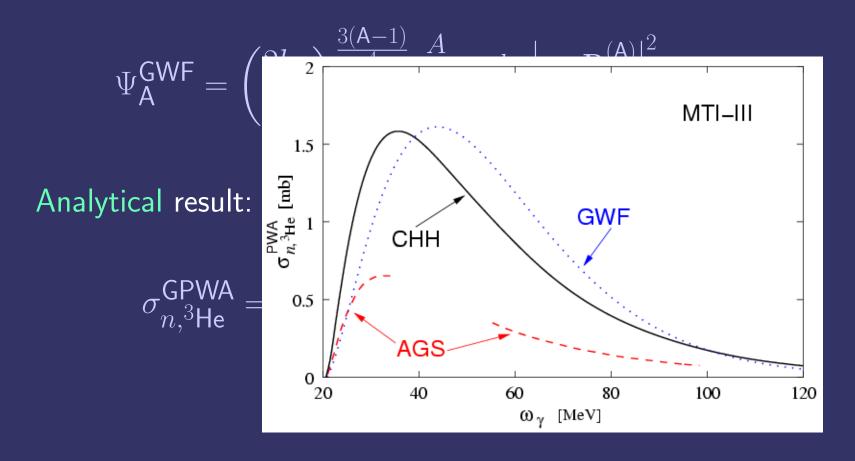
$$\Psi_{\mathsf{A}}^{\mathsf{GWF}} = \left(\frac{2b_{\mathsf{A}}}{\pi}\right)^{\frac{3(\mathsf{A}-1)}{4}} \prod_{i=1}^{A} e^{-b_{\mathsf{A}} \left|\mathbf{r}_{i} - \mathbf{R}_{cm}^{(\mathsf{A})}\right|^{2}} \Theta_{T_{\mathsf{A}}S_{\mathsf{A}}}^{a}$$

Analytical result:

$$\sigma_{n,^3\text{He}}^{\text{GPWA}} = 4\pi^2\alpha\omega_\gamma k\mu \left(\frac{4}{3}\right)^{\frac{9}{2}} \frac{4\,b_3^3\,k^2\,e^{-\frac{2k^2}{3b_4}}}{\sqrt{2\pi b_4}(b_3+b_4)^6}$$

Test the PWA Approximation

A simple model: Gaussian Wave Functions



Photodisintegration:

$$\gamma + {}^4$$
He $\rightarrow N + 3$

Total cross section

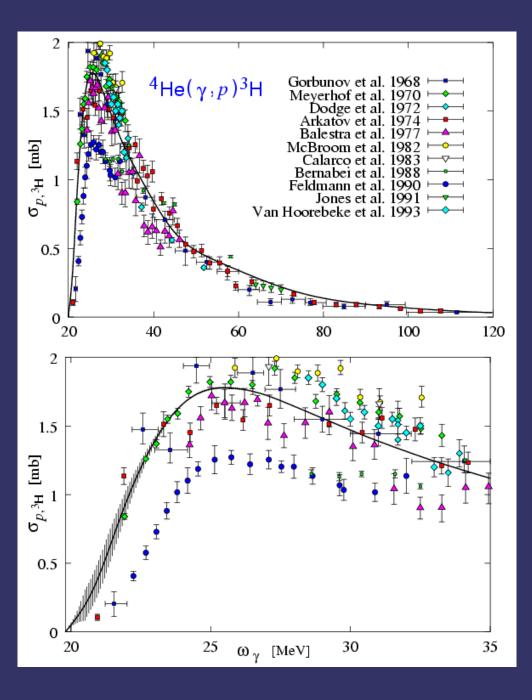
$$\sigma_{N,3} \propto \int |\langle \Psi_{N,3}^- | \mathbf{D} | \Psi_{\alpha} \rangle|^2 d\Omega$$

The $p,^3H$ channel \blacktriangleright

— MTI-III

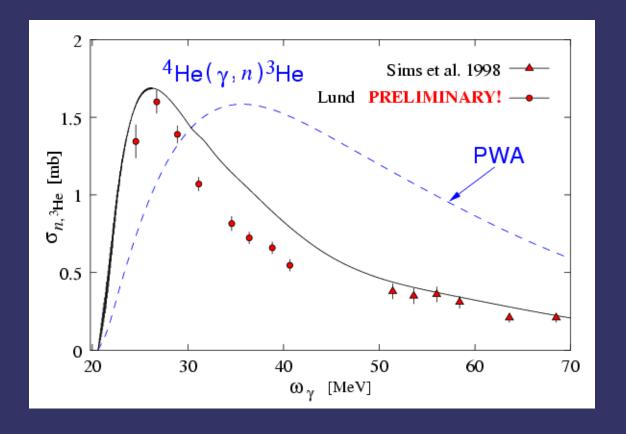
CHH

Quaglioni, Barnea, Efros, Leidemann, Orlandini, PRC69(2004)044002



New Experimental Data

The availability of 4-body *ab initio* calculations also beyond the 3-body breakup threshold has given birth to a new experimental interest



Tagged Photons

Total photodisintegration of ⁴He:

Total cross section

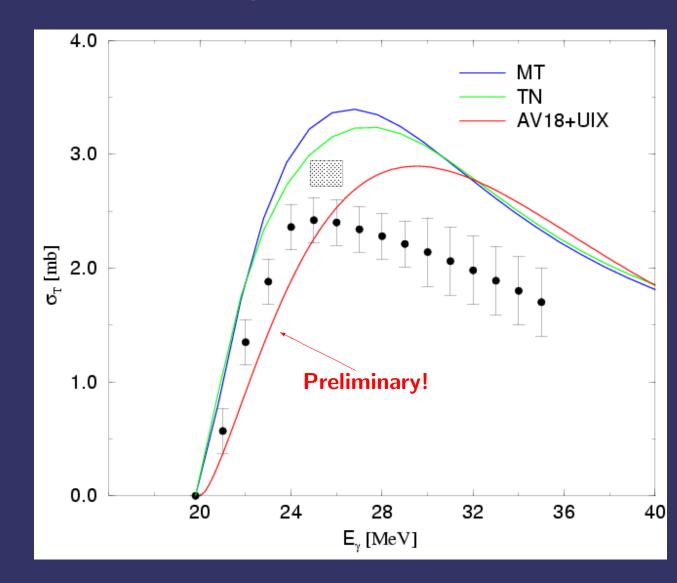
EIHH

Barnea, et al.

•

 (γ, n) Berman et~al. (1980)

 (γ, p) Feldman et~al. (1990)



Electrodisintegration: $e+^4He \rightarrow e'+x+Y$

$$\frac{d^5\sigma}{dE'd\Omega_{e'}d\Omega_x} \propto [V_L F_L + V_T F_T + V_{LT} F_{LT} \cos\phi + F_{TT} F_{TT} \cos 2\phi]$$

 4 He(e, e'x)Y Longitudinal Response

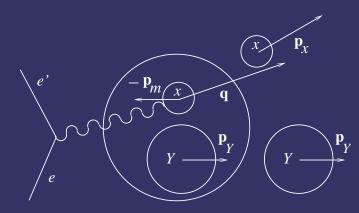
$$F_L(\mathbf{q}, \omega, \theta_x) \propto |\langle \Psi_{x,Y}^- | \hat{\rho}(\mathbf{q}) | \Psi_{\alpha} \rangle|^2$$

Investigate validity of PWIA:

- \circ direct knock-out of x
- \circ Y is a spectator

NO Antisymmetrization

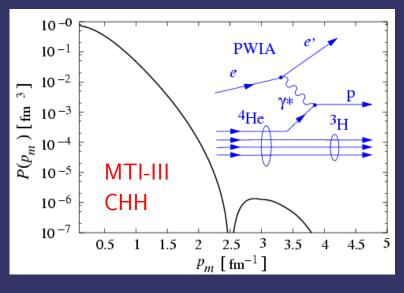
NO Final State Interaction



The $p,^3H$ channel

The PWIA longitudinal response turns out to be proportional to the proton-triton momentum distribution

$$F_L = Z_\alpha (G_E^p)^2 P(p_m)$$



- access to g.s. quantities
- ightharpoonup get informations on short range correlations from the high p_m region

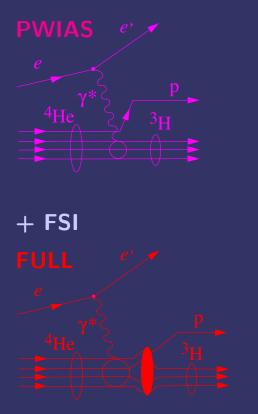
check!

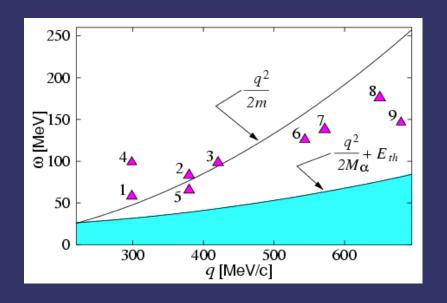
Longitudinal Response

parallel p_p kinematics

Deviations from PWIA

+ antisymmetrization





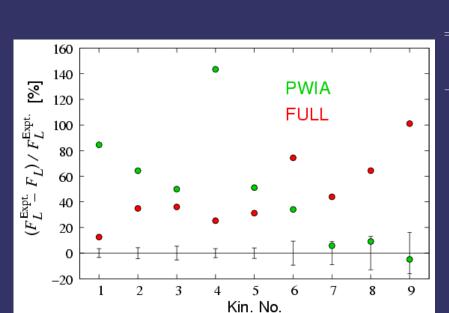
	PWIA		
Kin.	$F_L/(\widetilde{G}_E^{p})^2$		
No.	$[(\text{GeV/}c)^{-3}\text{sr}^{-1}]$	(%)	(%)
1	185.2	+ 9.3	-39.6
2	185.2	+ 1.2	$-\ 20.1$
3	185.2	+ 0.0	$-\ 12.8$
4	100.0	+ 4.5	-43.4
5	100.0	+ 3.9	-16.6
6	100.0	- 1.1	$+ \ 11.4$
7	100.0	-1.9	$+\ 11.5$
8	100.0	- 1.7	$+\ 10.8$
9	14.63	-4.4	$+\ 52.1$

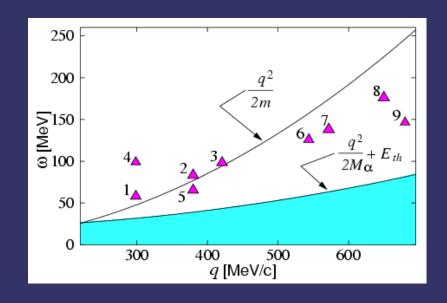
Longitudinal Response

parallel
$$p_p$$
 kinematics

$$\frac{d^5\sigma}{dE'd\Omega_{e'}d\Omega_p} \propto [V_L F_L + V_T F_T]$$

Comparison with experiment J.E. Ducret et al. NPA556(1993)373





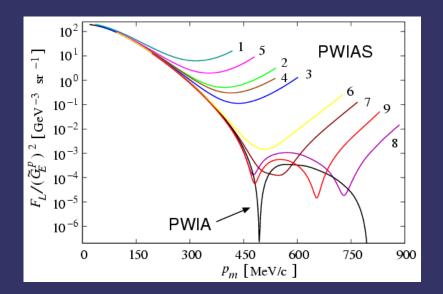
Kin.	$F_L \left[(\mathrm{GeV}/c) \ \mathrm{sr}^{-1} \right]$				
No.					
1	59.0	± 2.0	± 2.2	$\overline{66.4}$	
2	49.6	± 2.1	± 2.1	66.9	
3	46.2	± 2.5	± 2.2	62.7	
4	27.8	± 1.0	± 1.2	34.9	
5	28.4	± 1.2	± 1.3	37.2	
6	14.8	± 1.4	± 1.2	25.9	
7	16.0	± 1.5	± 1.3	23.0	
8	9.96	± 1.29	± 1.15	16.3	
9	1.35	± 0.22	± 0.22	2.73	

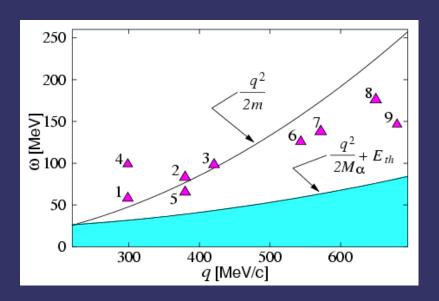
Longitudinal Response

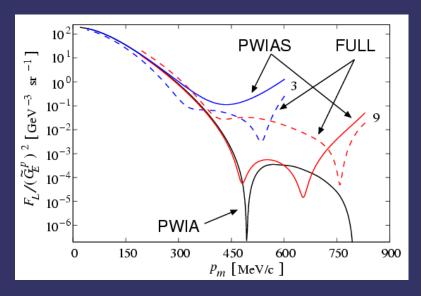
nonparallel kinematics

Deviations from PWIA

- + antisymmetrization ⇒ PWIAS
- $+ FSI \Rightarrow FULL$







The d, d channel: Longitudinal Response

Deviations from PWIA

+ antisymmetrization ⇒ PWIAS

+ FSI ⇒ FULL

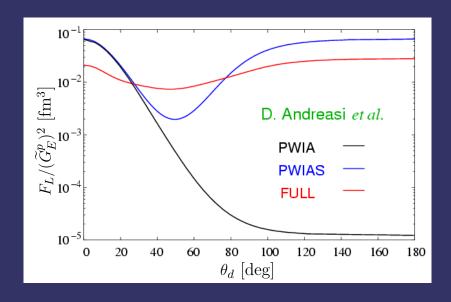
$$Q^2 = 4.93 \; {
m fm}^{-2}, \quad E_{cm} = 35 \; {
m MeV}$$

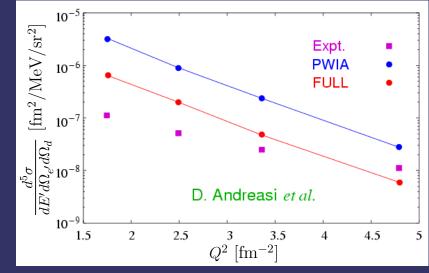
Comparison with experiment

R. Ent et al. PRL67(1991)18

$$Q^2 = 1.75, 2.49, 3.36, 4.93 \text{ fm}^{-2}$$

$$E_{cm}=35~{
m MeV},~~p_m=125~{
m MeV/c}$$





Two fragments both in the initial and in the final state

on-shell T-matrix

$$T_{fi}(E) = \langle \Psi_f^-(E) | V_i | \Phi_i(E) \rangle = \langle \Phi_f(E) | V_f | \Psi_i^+(E) \rangle$$
$$= \langle \Phi_f(E) | V_f | \Phi_i(E) \rangle + \int \frac{F_{fi}(E')}{E + i\varepsilon - E'} dE'$$

Two fragments both in the initial and in the final state

on-shell T-matrix

$$T_{fi}(E) = \langle \Psi_f(E) | V_i | \Phi_i(E) \rangle = \langle \Phi_f(E) | V_f | \Psi_i^{\dagger}(E) \rangle$$

$$= \langle \Phi_f(E) | V_f | \Phi_i(E) \rangle + \int \frac{F_{fi}(E')}{E + i\varepsilon - E'} dE'$$

$$F_{fi}(E') = \sum_{\nu} \langle \Phi_f | V_f | \Psi_{\nu} \rangle \langle \Psi_{\nu} | V_i | \Phi_i \rangle \delta(E' - E_{\nu})$$

Two fragments both in the initial and in the final state

on-shell T-matrix

$$T_{fi}(E) = \langle \Psi_f^-(E) | V_i | \Phi_i(E) \rangle = \langle \Phi_f(E) | V_f | \Psi_i^+(E) \rangle$$
$$= \langle \Phi_f(E) | V_f | \Phi_i(E) \rangle + \int \frac{F_{fi}(E')}{E + i\varepsilon - E'} dE'$$

$$L[F_{fi}](\sigma) = \langle \Phi_f | V_f \frac{1}{H - \sigma^*} \frac{1}{H - \sigma} V_i | \Phi_i \rangle = \langle \widetilde{\psi}_f | \widetilde{\psi}_i \rangle$$

$$(H-\sigma_R-i\sigma_I)|\widetilde{\psi}_{i/f}\rangle=V_{i/f}|\Phi_{i/f}\rangle \ \longrightarrow \ {
m full} \ {
m FSII}$$

Two fragments both in the initial and in the final state

on-shell T-matrix
$$T_{fi}(E) = \langle \Psi_{f}(E) | V_{i} | \Phi_{i}(E) \rangle \Rightarrow \langle \Phi_{f}(E) | V_{f} | \Psi_{i}^{+}(E) \rangle$$

$$= \langle \Phi_{f}(E) | V_{f} | \Phi_{i}(E) \rangle + \int \frac{F_{fi}(E')}{E + i\varepsilon - E'} dE'$$

$$L[F_{fi}](\sigma) = \langle \Phi_{f} | V_{f}^{-1} | \frac{1}{H - \sigma^{*}} \frac{1}{H - \sigma} V_{i} | \Phi_{i} \rangle = \langle \widetilde{\Psi}_{f} | \widetilde{\Psi}_{i} \rangle$$

$$(H - \sigma_{R} - i\sigma_{I}) | \widetilde{\Psi}_{i/f} \rangle = V_{i/f} | \Phi_{i/f} \rangle \longrightarrow \text{full FSI!}$$

Conclusions

Summary

- First *ab initio* calculation of exclusive reactions in the continuum of a 4–particle system also beyond the 3–body breakup threshold
- FSI has been rigorously taken into account via the LIT method: first application to exclusive processes with A>2
- ullet The 2–fragment breakup of 4 He induced by real or virtual photons has been studied

Photodisintegration

- The ${}^4{\rm He}(\gamma,p){}^3{\rm H}$ and ${}^4{\rm He}(\gamma,n){}^3{\rm He}$ total cross sections show a pronounced dipole peak at 27 MeV, which favours the high-peaked experimental data
- The FSI plays a fundamental role in the cross section evaluation

Electrodisintegration

• We have investigated the reliability of direct knock—out hypothesis and the role of FSI for both $^4{\rm He}(e,e'p)^3{\rm H}$ and $^4{\rm He}(e,e'd)d$ reactions

Outlook

- More quantitative predictions with realistic two-body interactions and three-body forces
- Application of the method to the study of other exclusive reactions: $^6\text{Li}(\gamma,^3\text{He})^3\text{H}$
- Application of the method to hadronic processes: four-body phase shifts