The No-Core Shell Model with a Twist

NCSM collaboration:

University of Arizona: **Ionel Stetcu**, Bruce R. Barrett, Bira van Kolck Lawrence-Livermore National Laboratory: Petr Navràtil, Erich W. Ormand Iowa State University: James P. Vary San Diego State University: Calvin W. Johnson

Trento 2005 The [No-Core](#page-45-0) Shell Model with a Twist

イロト イ押 トイヨ トイヨト

Φ

 $2Q$

The [Twist](#page-33-0)

The many-body Schrodinger **Equation:**

$$
\mathcal{H}|\Psi\rangle = \mathcal{E}|\Psi\rangle
$$

$$
H_{int} = \frac{1}{A} \sum_{ij} \frac{(\vec{p}_i - \vec{p}_j)^2}{2m} + \sum_{i > j} V_{ij}^{NN} + \sum_{i > j > k} V_{ijk}^{NNN} + ...
$$

● realistic, high precision two-body potentials: Argonne, CD Bonn

● theoretical three-body forces: TM'

Ξ

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R} \rightarrow$

4日下

[Applications](#page-20-0) to General Operators The [Twist](#page-33-0)

Additional Ingredient: Center of Mass Motion

Addition of CM Hamiltonian

$$
H \rightarrow H + \frac{1}{2mA}P_{CM}^2 + \frac{1}{2}mA\Omega^2R_{CM}^2
$$

- no influence on the intrinsic properties
- **•** binds the nucleon clusters
- \bullet removed from the final results

Э

 $\mathbb{B} \rightarrow \mathbb{R} \mathbb{B} \rightarrow$

4. 17. 34.

[Applications](#page-20-0) to General Operators The [Twist](#page-33-0)

Effective Operators

Start with the full space and the bare Hamiltonian H

 \Rightarrow

 $\leftarrow \equiv$

Ξ **B**

4日下

[Applications](#page-20-0) to General Operators The [Twist](#page-33-0)

Effective Operators

唐

不重 的不重 的

4 母 4日下

B

[Applications](#page-20-0) to General Operators The [Twist](#page-33-0)

Effective Operators

イロメ イ母メ イ君メ イ君メー

Э

Transformed Operators

Effective Hamiltonian in the model space

$$
H_{\text{eff}} = \frac{P + \omega^{\dagger}}{\sqrt{P + \omega^{\dagger}\omega}} H \frac{P + \omega}{\sqrt{P + \omega^{\dagger}\omega}}
$$

$$
H_{\text{eff}} P |\Psi_k\rangle = E_k P |\Psi_k\rangle \text{ for } k = 1, ..., d
$$

$$
H |\Psi_k\rangle = E_k |\Psi_k\rangle \text{ for } k = 1, ..., d, ... \infty
$$

$$
O_{\text{eff}} = \frac{P + \omega^{\dagger}}{\sqrt{P + \omega^{\dagger}\omega}}O\frac{P + \omega}{\sqrt{P + \omega^{\dagger}\omega}}
$$

 \Rightarrow

イロトメ 御 トメ 君 トメ 君 トッ

Transformed Operators

Effective Hamiltonian in the model space

$$
H_{\text{eff}} = \frac{P + \omega^{\dagger}}{\sqrt{P + \omega^{\dagger}\omega}} H \frac{P + \omega}{\sqrt{P + \omega^{\dagger}\omega}}
$$

$$
H_{\text{eff}} P |\Psi_k\rangle = E_k P |\Psi_k\rangle \text{ for } k = 1, ..., d
$$

$$
H |\Psi_k\rangle = E_k |\Psi_k\rangle \text{ for } k = 1, ..., d, ... \infty
$$

Effective general operator in the model space

$$
O_{\text{eff}} = \frac{P + \omega^{\dagger}}{\sqrt{P + \omega^{\dagger}\omega}} O \frac{P + \omega}{\sqrt{P + \omega^{\dagger}\omega}}
$$

Э

(ロ) (伊)

 $A\ \overline{B}\ \rightarrow\ A\ \overline{B}\ \rightarrow$

The [Twist](#page-33-0)

Formal Solution for ω

$$
Q|\Psi_k\rangle = Q\omega P|\Psi_k\rangle \text{ for } k = 1, ..., d
$$

$$
\langle \alpha_Q^{(i)} | \Psi_k \rangle = \sum_{j=1}^d \langle \alpha_Q^{(i)} | \omega | \alpha_P^{(j)} \rangle \langle \alpha_P^{(j)} | \Psi_k \rangle
$$

for $k = 1, ..., d$ and $i = d + 1, ..., \infty$

$$
\langle \alpha_Q^{(i)} | \omega | \alpha_P^{(j)} \rangle = \sum_{k=1}^d \langle \alpha_Q^{(i)} | \Psi_k \rangle \langle \alpha_P^{(j)} | \tilde{\Psi}_k \rangle
$$

Requires solution to the original problem

 \Rightarrow

イロメ イ部メ イヨメ イヨメ

The [Twist](#page-33-0)

Formal Solution for ω

$$
Q|\Psi_k\rangle = Q\omega P|\Psi_k\rangle \text{ for } k = 1, ..., d
$$

$$
\langle \alpha_Q^{(i)} | \Psi_k \rangle = \sum_{j=1}^d \langle \alpha_Q^{(i)} | \omega | \alpha_P^{(j)} \rangle \langle \alpha_P^{(j)} | \Psi_k \rangle
$$

for $k = 1, ..., d$ and $i = d + 1, ..., \infty$

$$
\langle \alpha_Q^{(i)} | \omega | \alpha_P^{(j)} \rangle = \sum_{k=1}^d \langle \alpha_Q^{(i)} | \Psi_k \rangle \langle \alpha_P^{(j)} | \tilde{\Psi}_k \rangle
$$

Requires solution to the original problem

 \Rightarrow

 $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow \mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow$

(ロ) (母)

Cluster Approximation

• Find ω for $a < A$ (reproduce lowest eigenvalues)

- Compute $H_{\text{eff}}^{(a)}$
- Use $V_{\text{eff}}^{(a)}$ in the A-body calculation
- Scan for convergence (independence upon the model space and harmonic oscillator frequency).

- \bullet a \rightarrow A for fixed model space;
- \bullet $P \rightarrow \infty$ for fixed cluster.

≮ロト ⊀伊ト ⊀ ヨト ⊀ ヨト

Cluster Approximation

- Find ω for $a < A$ (reproduce lowest eigenvalues)
- Compute $H_{\text{eff}}^{(a)}$ eff
- Use $V_{\text{eff}}^{(a)}$ in the A-body calculation
- Scan for convergence (independence upon the model space and harmonic oscillator frequency).

- \bullet a \rightarrow A for fixed model space;
- \bullet $P \rightarrow \infty$ for fixed cluster.

≮ロト ⊀伊ト ⊀ ヨト ⊀ ヨト

Cluster Approximation

- Find ω for $a < A$ (reproduce lowest eigenvalues)
- Compute $H_{\text{eff}}^{(a)}$ eff
- Use $V_{\text{eff}}^{(a)}$ in the A-body calculation
- Scan for convergence (independence upon the model space and harmonic oscillator frequency).

- \bullet a \rightarrow A for fixed model space;
- \bullet $P \rightarrow \infty$ for fixed cluster.

イロト イ押 トイヨ トイヨト

Cluster Approximation

- Find ω for $a < A$ (reproduce lowest eigenvalues)
- Compute $H_{\text{eff}}^{(a)}$ eff
- Use $V_{\text{eff}}^{(a)}$ in the A-body calculation
- Scan for convergence (independence upon the model space and harmonic oscillator frequency).

- \bullet a \rightarrow A for fixed model space:
- \bullet $P \rightarrow \infty$ for fixed cluster.

イロト イ押 トイヨ トイヨト

Cluster Approximation

- Find ω for $a < A$ (reproduce lowest eigenvalues)
- Compute $H_{\text{eff}}^{(a)}$ eff
- Use $V_{\text{eff}}^{(a)}$ in the A-body calculation
- Scan for convergence (independence upon the model space and harmonic oscillator frequency).

Convergence to the exact solution if:

- \bullet a \rightarrow A for fixed model space;
- \bullet $P \rightarrow \infty$ for fixed cluster.

 $\langle \vert \bar{f} \vert \vert \rangle$ and $\langle \vert \bar{f} \vert \rangle$ and $\langle \vert \bar{f} \vert \rangle$

[Applications](#page-20-0) to General Operators The [Twist](#page-33-0)

Cluster Approximation Two-body cluster

$$
\left(S\approx\sum_{i>j=1}^A S_{ij}\right)
$$

$$
PO_{\text{eff}}P = P \sum_{i>j=1}^{A} \left[e^{-S_{ij}} (O_i + O_j) e^{S_{ij}} - (O_i + O_j) \right] P
$$

$$
PO_{\text{eff}}P = P \sum_{i>j=1}^{A} e^{-S_{ij}} O_{ij} e^{S_{ij}} P
$$

$$
PH_{\text{eff}}P = P \sum_{i=1}^{A} h_i P + P \left[e^{-S_{ij}} \left(h_i + h_j + v_{ij} \right) e^{S_{ij}} - h_i - h_j \right] P
$$

[Applications](#page-20-0) to General Operators The [Twist](#page-33-0)

Cluster Approximation Two-body cluster

$$
\left(S\approx\sum_{i>j=1}^A S_{ij}\right)
$$

$$
\mathit{PO}_{\mathit{eff}}\mathit{P} = \mathit{P}\sum_{i>j=1}^{A}\left[e^{-S_{ij}}\left(O_{i}+O_{j}\right)e^{S_{ij}}-\left(O_{i}+O_{j}\right)\right]\mathit{P}
$$
\n
$$
\mathit{PO}_{\mathit{eff}}\mathit{P} = \mathit{P}\sum_{i>j=1}^{A}e^{-S_{ij}}O_{ij}e^{S_{ij}}\mathit{P}
$$

$$
PH_{\text{eff}}P = P\sum_{i=1}^{A} h_i P + P\left[e^{-S_{ij}}\left(h_i + h_j + v_{ij}\right)e^{S_{ij}} - h_i - h_j\right]P
$$

nar

[Applications](#page-20-0) to General Operators The [Twist](#page-33-0)

Two-body Cluster: Illustration

Navratil, Kamuntavicius, Barrett, Phys. Rev. C61 (2000) 044001

- Short range correlations included in $V_{\text{eff}}^{(2)}$
- Long-range and many-body correlations accomodated by increasing the model space

Ξ

4. 17. 30

Ξ

Summary

Advantages

- **•** Preserve all the symmetries, including the translational invariance
- Flexible enough to handle both local and non-local interactions
- Suitable for light and medium nuclei
- Can accomodate three- (and soon four-) body forces

- Bad asymptotics (problems with long-range observables)
- Large dimensions in M-scheme codes, difficult antisymmetrization in relative coordinates.

イロト イ押 トイヨ トイヨト

Summary

Advantages

- **•** Preserve all the symmetries, including the translational invariance
- Flexible enough to handle both local and non-local interactions
- Suitable for light and medium nuclei
- Can accomodate three- (and soon four-) body forces

Disadvantages and Limitations

- Bad asymptotics (problems with long-range observables)
- Large dimensions in M-scheme codes, difficult antisymmetrization in relative coordinates.

Ξ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Motivation

- consistency operators wfns \bullet
- \bullet poor convergence properties for some observables

PRL 87 (2001) 172502

Ŷ.

l,

ă,

Why M1 and not E2 with Bare Operators?

唐

 \mathbb{B} is a \mathbb{B} is

Trento 2005 The [No-Core](#page-0-0) Shell Model with a Twist

4日下

Effective E2 Operators Two-body cluster

small model space: expect larger renormalization

- large variation with the model space \bigcirc
- three-body forces: might be important, but not the issue

B

 $\left\{ \begin{array}{ccc} \square & \rightarrow & \left\langle \bigoplus \right. \right. & \rightarrow & \left\langle \biguplus \right. \right. & \rightarrow & \left\langle \biguplus \right. \right. \end{array}$

Effective E2 Operators Two-body cluster

- small model space: expect larger renormalization
- large variation with the model space
- three-body forces: might be important, but not the issue

ă,

 $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow \mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow$

(ロ) (母)

The Question is 'Why?'

Reminder

- Two-body cluster accounts mainly for the short-range correlations
- \bullet E2 is long range

Short range operators should be better described

4 ロ → 4 伊

 $A\ \overline{B}\ \rightarrow\ A\ \overline{B}\ \rightarrow$

The Question is 'Why?'

Reminder

- Two-body cluster accounts mainly for the short-range correlations
- \bullet E2 is long range

Short range operators should be better described

Ξ

4 ロ → 4 伊

 $A\ \overline{B}\ \rightarrow\ A\ \overline{B}\ \rightarrow$

Range Dependence

$$
O\sim \exp\left[-\frac{(\vec{r_1}-\vec{r_2})^2}{a_0^2}\right]
$$

 \leftarrow

 290

ă

不重

S

Longitudinal-longitudinal distribution function

$$
\rho_{LL}(q) = \frac{1}{4Z} \sum_{j \neq i} (1 + \tau_z(i))(1 + \tau_z(j)) \int d\vec{r_1} d\vec{r_2} \langle g.s. |j_0(q|\vec{r_1} - \vec{r_2}|) |g.s. \rangle
$$

Model space independence at high momentum transfer: good renormalization at the two-body cluster level

Quick Fix for Long-Range Operators?

Reminder:

- CM Hamiltonian binds the cluster with a harmonic oscillator potential
- The cluster wavefunction has a $exp(-(r/r_0)^2)$ fall off, instead of $exp(-r/r_0)$

Can one approximate the binding potential with one which gives better asymptotics?

 $A\equiv 0 \quad A\equiv 0$

Quick Fix for Long-Range Operators? Gaussian binding

Idea: replace the HO binding with a Gaussian

- **•** Fix the Gaussian width to bind exactly as many states as necessary
- **Gaussian strength:** $V_0 = -mΩ²a_0²/2$

•
$$
P \rightarrow \infty
$$
: Gaussian \rightarrow HO

Better fall-off of the cluster wavefunction

4 m k

 \rightarrow \Rightarrow \rightarrow

Ξ

Gaussian Binding Spectrum results

- ground-state energy shifted down a few MeV
- spectrum about the same

ă,

 \leftarrow \Box

Gaussian Binding Quadrupole transition results

- more realistic cluster binding does not improve dramatically $B(E2)$ in \bullet general
- most likely a many-body effect which cannot be avoided

4. 17. 34.

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R} \rightarrow$

Э

Summary Renormalization Operators

- Short-range operators are in general well described with effective operators at the two-body cluster level; **some observables become model-space independen**t.
- Long-range operators are not significantly renormalized and this is most likely a many-body effect; this problem is not specific to the NCSM!
- Nevertheless, NCSM remains a successful approach

New Approach to Effective Interactions for NCSM

Purpose

To provide a consistent treatement of effective interactions and operators

Means

- EFT approach:
	- **•** consider the most general Hamiltonian which respects all the symmetries
	- determine the coupling constants by fit to experimental data

医单头 化重变

Shell-Model Space

 \bullet the SM space is a particular type of truncation, using bound states only

$$
\psi_{nl(s)j}(\vec{r}) = N_{nl}r^l L_n^{l+1/2}(\alpha r^2) \exp(-\alpha r^2) \left[Y_l(\hat{r}) \otimes \chi_s \right]_j
$$

● defined by the maximum number of oscillator quanta allowed N_{max} $(N = 2n + l)$:

$$
P = \sum_{2n+l=0}^{N_{max}} |nl(s)j\rangle\langle nl(s)j|
$$

• in the limit $N_{max} \rightarrow \infty$ equivalent with continuum

4. 17. 30

医毛囊 医牙骨下的

Э

Two-body Observables

- \bullet one bound state in the ${}^{3}S_{1}$ channel
- **•** phaseshifts

BUT

In a finite HO basis, all wfs. have a bound-state behavior at large distances

Can we still get phaseshifts?

Ξ

 $\mathcal{A} \ \overline{\mathcal{B}} \ \mathcal{B} \ \mathcal{A} \ \overline{\mathcal{B}} \ \mathcal{B}$

4 ロ → 4 伊

Phaseshifts in a Finite Basis

$$
H=\frac{p^2}{2\mu}+V
$$

Diagonalization in the HO finite basis of dimension d

$$
|\Psi_E\rangle = \sum_{\alpha=1}^d A_\alpha(E)|\alpha\rangle
$$

$$
H|\Psi_E\rangle=E|\Psi_E\rangle
$$

If |Ψi corresponds to an eigenvalue in the continuum, at large distances, **but not at infinity**, this solution **still** approximates a shifted free particle:

$$
\Psi_E(r) = a r j_l(kr) + b r n_l(kr), \ k = \sqrt{2\mu E}
$$

$$
\delta_l(E) = \frac{b}{a}
$$

NB: in the finite basis, E **is a discrete eigenvalue!**

Э

イロト イ押 トイヨ トイヨト

- diagonalize the Hamiltonian in the finite basis \bullet
- compute the free-particle solutions for the discrete eigenvalues $E > 0$ \bullet
- compute $R^2_{rms}(E) = \langle \Psi_E | r^2 | \Psi_E \rangle$
- for $\mathsf{r}_i>\sqrt{R_{\mathsf{rms}}^2(E)},$ fit the values for a and b so that

$$
\sum_i \left[\Psi_E(r_i) - ar_{ij}(kr_i) - br_i n_i(kr_i)\right]^2 = \min
$$

医单头 化重变

4. 17. 30

LO Pionless EFT Results for phaseshifts: 3S_1 channel

The coupling constant: fitted to reproduce the deuteron binding energy

 \Rightarrow

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{R}$

Trento 2005 The [No-Core](#page-0-0) Shell Model with a Twist

4日下 ×. 闹 **B** \mathcal{A}

LO Pionless EFT Results for phaseshifts: ${}^{1}S_{0}$ channel

The coupling constant: fitted to reproduce the scattering length

 \Rightarrow

 $\mathbb{B} \rightarrow \mathbb{R} \oplus \mathbb{B} \rightarrow$

4日下 ×. 闹 **B** \mathcal{A}

LO Pionless EFT Running of the coupling constants

$$
H=\frac{p^2}{2\mu}+C_0
$$

 $\left\langle \cdot \right\rangle \equiv \left\langle \cdot \right\rangle$

Ξ **B**

Trento 2005 The [No-Core](#page-0-0) Shell Model with a Twist

4日)

Obvious Issues

- oscillations in the phaseshift curves
- \bullet ¹S₀ channel fitting less accurate (and more involved)
- e easier fit for N_{max} large and $\hbar\Omega$ small
- energies involved in many-body processes might be outside the range of validity of the pionless theory (one has to go to the pionfull theory)

The [Twist](#page-33-0)

NLO Pionless EFT 3S_1 channel

- Reproduces the deuteron binding energy and the scattering length
- The phaseshift curve smooths out

Ξ

Conclusions and Outlook

Effective operators from unitary transformation:

- Implemented at the two-body cluster level
- little effect for long-range operators \bullet
- **good description of short-range operators** \bullet
- applications to other problems in progress
- New approach to effective interactions \bigcirc
	- description of phaseshifts in finite L^2 integrable basis
	- improved description at the NLO for ${}^{3}S_{1}$ channel
	- algorithm to obtain the coupling constants in spaces accesible for many-body calculations
	- higher order and three-body forces

Conclusions and Outlook

Effective operators from unitary transformation:

- Implemented at the two-body cluster level
- little effect for long-range operators \bullet
- **good description of short-range operators** \bullet
- applications to other problems in progress
- New approach to effective interactions
	- description of phaseshifts in finite L^2 integrable basis
	- \bullet improved description at the NLO for ${}^{3}S_{1}$ channel
	- algorithm to obtain the coupling constants in spaces accesible for many-body calculations
	- higher order and three-body forces

Conclusions and Outlook

Effective operators from unitary transformation:

- Implemented at the two-body cluster level
- little effect for long-range operators \bullet
- **good description of short-range operators** \bullet
- applications to other problems in progress
- New approach to effective interactions
	- description of phaseshifts in finite L^2 integrable basis
	- \bullet improved description at the NLO for ${}^{3}S_{1}$ channel
	- algorithm to obtain the coupling constants in spaces accesible for many-body calculations
	- higher order and three-body forces

