
The Shell Model on NNN forces

A. P. Zuker. ECT* talk on 24 June 2005



The following remarks from Abzouzi, Caurier, and Zuker
(1991) still provide a good introduction to the subject:
“The use of realistic potentials (i.e., consistent with NN

scattering data) in shell-model calculations was pioneered by
Kuo and Brown (1966). Of the enormous body of work that
followed we would like to extract two observations. The first
is that whatever the forces (hard or soft core, ancient or new)
and the method of regularization (Brueckner G matrix (Ka-
hana et al., 1969; Kuo and Brown, 1966), Sussex direct extrac-
tion (Elliott et al., 1968) or Jastrow correlations (Fiase et al.,
1988)) the effective matrix elements are extraordinarily simi-
lar (Pasquini and Zuker, 1978; Rutsgi et al., 1971). The most
recent results (Jiang et al., 1989) amount to a vindication of
the work of Kuo and Brown. We take this similarity to be the
great strength of the realistic interactions, since it confers on
them a model-independent status as direct links to the phase
shifts.
The second observation is that when used in shell-model cal-

culations and compared with data these matrix elements give
results that deteriorate rapidly as the number of particle in-
creases (Halbert et al., 1971) and (Brown and Wildenthal,
1988). It was found (Pasquini and Zuker, 1978) that in the
pf shell a phenomenological cure, confirmed by exact diag-
onalizations up to A=48 (Caurier et al., 1994), amounts to
very simple modifications of some average matrix elements
(centroids) of the KB interaction (Kuo and Brown, 1968).”



The Shell Model on NNN forces

We had a paradigm:
Solve Schrödinger with “hard core” NN potentials
Why “hard core”?

•NN data. Not true =⇒ Vlow k

• Saturation. Not true. See figure
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Soft NN does not saturate. Needs quadratic piece.

Hard NN saturates at close packing. Unrealistic.

Need NNN =⇒ New paradigm: Vlow k + NNN



What do we know about NNN?

Axiom: NNN must do what NN does not.

• In exact calculations NN fails in a number of details.

•There is also a smoking gun in 10B

• In SM calculations NN fails in a global way.

Aim of seminar:

• Explain what is SM.

• Exhibit NN failures: The monopole problem

• Show G-Vlow k equivalence.

•Use Vlow k to map full monopole problem.

Conclusion: Dealing with NNN is not (should not be) so
difficult.



What is SM? SM is to recognize that action takes place
at Fermi surface. As Landau did for ∞ systems (plane waves,
upper plot)
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Adapting it to finite systems (harmonic oscillator, lower plot)



SM problems. Shell effects

Subtract exp. BE from some LD

E(LD) = 15.5A − 17.8A2/3 − 28.6
4T (T + 1)

A
+ 40.2

4T (T + 1)

A4/3 − V d
Cm,
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Experimental shell effects (BE(exp)-E(LD)) along isotope
and isotone lines. Both plots contain the same information.
The isotone lines are displaced by -14 MeV.
SM Problems

• Bypass saturation by fixing �ω.

•Use G matrix as pseudopotential.

•Realistic forces do not produce the right EI closures: The
monopole problem



Getting acquainted with Hm

Problem in mid-1960’s:

first two excited states in 16O: 1p1h 3− and
nearly degenerate 4p4h 0+ at ≈6 MeV.

Conventional wisdom, H = Hsp + Hcorr

Hence, if unperturbed 3− at ≈ 8 Mev, unperturbed 0+ at ≈
32 MeV. Too much

Solution: SM with 12C core and four particles in p1/2 ≡ h
and s1/2 d5/2 ≡ p orbits some 3 MeV above.

Phys. Rev. Lett. 21 (1968) 39

KEY: no Hsp, but Hm

Make it simple: two shells, no isospin

Hm = εpmp + εhmh+ (1)

−1

2
|Vpp|mp(mp − 1) − 1

2
|Vhh|mh(mh − 1) − |Vph|mpmh,



Calculate energy of kpkh. cs is full with Dh particles, i.e., 4
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ε(k) =

[
(εp − εh) − 1

2
(|Vpp| − |Vhh|)(Dh − 1)

]
k

+ (
1

2
|Vpp + Vhh| − |Vph|)k(Dh − k).

If purely realistic set very unrealistic εp − εh = 0,
Hence something wrong with Vrs.



The isospin puzzle Phys. Rev. Lett. 23 (1969) 983.
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HBF = aphmpmh + bphTp · Th,

Tp · Th =
1

2
[T (T + 1) − Tp(Tp + 1) − Th(Th + 1)] (2)

bph= distance between centroids.
For a 2b force bph, must be constant. It is not
Conclusions

•Quadratic i.e., 2b effects are crucial in producing monopole
drift.

•Three body terms seem necessary.

•There is a monopole problem with the realistic interactions



The SM smoking gun. Circa 1975

Eduardo Pasquini Ph.D thesis

The spectrum of 49Ca for the KB, KB’ and KB3 interactions
compared to experiment

0

1

2

3

4

0

1

2

3

4

3/2−

1/2−

7/2−

5/2−

5/2−

3/2−

7/2−

9/2−

3/2−

1/2−

7/2−

5/2−

5/2−

3/2−
7/2−
9/2−

3/2−

1/2−

7/2−

5/2−
5/2−
3/2−
7/2−
9/2−

3/2−

1/2−

9/2+
5/2−

(1/2−,3/2−)
5/2− 7/2+3/2−

∆
E

 (
M

eV
)

Expt.KB KB’ KB3

V T
fr(KB1) = V T

fr(KB) − (−)T 300 keV,

V 0
ff(KB1) = V 0

ff(KB) − 350 keV,

V 1
ff(KB1) = V 1

ff(KB) − 110 keV.

(f ≡ f7/2, r ≡ f5/2, p3/2, p1/2).

Therefore: NN has to be “fixed” through monopole changes.



Hm with realistic forces
Review (and improve) recipe to make 48Ca and 56Ni closed

V T
fr(R) =⇒ VT

fr(R) − (−)T κ

V T
ff(R) =⇒ VT

ff (R) − 1.5 κδT0,

R=realistic, f ≡ (p3/2, d5/2, f7/2) rest=r.

Fairly good for pf , but some problems

. No good for sd.

Solution

Make κ = κ0 + (m − m0) κ1 i.e., 3-body.

Phys. Rev. Lett. 90, 042502 (2003)

See how problem arises in p, sd and pf shells.

And gets solved.



The excitation specta of 10B and 22Na for different
interactions.
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NO= P. Navratil and E. Ormand, Phys. Rev. Lett. 87
152502 (2002). Note how simplest SM is energetically equiva-
lent to no core SM. Note same problem in sd shell.



The excitation specta of 23Na and 29Si for different
interactions.
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Backbending in 48Cr for different interactions.
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Illustrates situation in pf shell. κ = 0.28 is value for A ≈ 56.



G and Vlow k

Usual procedure, G-matrix

Gabcd = V abcd −
∑
α β

VabαβGαβcd

εαβ − εab + ∆

Problems:

•∆.

•No theory (except coupled cluster).

Phys. Rept. 71 141 (1981)

•No HF.

Advantage: it works in SM if monopole fixed.

New procedure Vlowk = V Λ

S. Bogner, T. Kuo and A. Schwenk Phys. Rept. 386 1 (2003)

T (k′, k; k2) = V Λ(k′.k) +
2

π
P

∫ Λ

0

V Λ(k′p)T (p, k; k2)

k2 − p2
p2dp

Problem: Λ, needs NNN
Advantages: soft V .

Program:

• Show G≡ Vlowk = V Λ

• Explore monopole behaviour for NNN hints (with Achim).



G matrix ω
s
=-80 MeV
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Top: Correlation plots between Vlow k (Argonne v18 )and G
matrix elements (Idaho A) in 4 major shells for �ω = 14 MeV.
Note that for Λ = 1.9 fm−1 the different VNN have practically
collapsed to one “universal” Vlow k. Bottom: Correlation plots
between Vlow k matrix elements for different cutoffs.

Make it quantitative



Universality

OAB = d−1
2

∑
rstuΓ

W Γ
rstuAW Γ

rstuB[Γ]

OAB =
OAB√

OAAOBB

.

�ω 18.4 13.9 11.0 9.0 7.9 6.9

18.4 12.271 9.420 7.434 5.841 5.166 4.436

13.9 9.420 7.391 5.917 4.703 4.181 3.609

11.0 7.434 5.917 4.781 3.829 3.414 2.958

8.8 5.841 4.703 3.829 3.084 2.757 2.395

7.9 5.166 4.181 3.414 2.757 2.468 2.146

6.9 4.436 3.609 2.958 2.395 2.146 1.869

18.4 1.000 0.989 0.970 0.949 0.938 0.926

13.9 0.989 1.000 0.995 0.985 0.978 0.971

11.0 0.970 0.995 1.000 0.997 0.994 0.989

8.8 0.949 0.985 0.997 1.000 0.999 0.997

7.9 0.938 0.978 0.994 0.999 1.000 0.999

6.9 0.926 0.971 0.989 0.997 0.999 1.000

Overlaps at different �ω for BonnC (G matrix).



OAB = d−1
2

∑
rstuΓ

W Γ
rstuAW Γ

rstuB[Γ]

σ2
A = OAA, OAB =

OAB√
OAAOBB

.

�ω 18.4 13.9 11.0 9.0 7.9 6.9

W -1.374 -1.035 -0.802 -0.620 -0.546 -0.463

σA 3.288 2.488 1.931 1.500 1.323 1.127

�ω 18.4 13.9 11.0 8.8 7.9 6.9

18.4 1.000 0.992 0.978 0.961 0.952 0.941

13.9 0.992 1.000 0.996 0.987 0.982 0.975

11.0 0.978 0.996 1.000 0.997 0.995 0.990

8.8 0.961 0.987 0.997 1.000 0.999 0.998

7.9 0.952 0.982 0.995 0.999 1.000 0.999

6.9 0.941 0.975 0.990 0.998 0.999 1.000

Overlaps at different �ω for Av18 (Vlow k).

Scaling laws

V Λ1,�ω1
low k ≈ σΛ1,�ω1

σΛ2,�ω2

V Λ2,�ω2
low k ⇒ V Λ,�ω

low k ≈ σΛ,�ω U ,

σΛ,�ω1

σΛ,�ω2

≈ �ω1

�ω2

σΛ1,�ω

σΛ2,�ω
≈

√
Λ2

Λ1
.



T=0 T=1 Total

O1 1 17.024 2.508 6.275

O2 2 18.122 3.330 7.169

O3 3 20.516 3.024 7.563

O4 4 17.381 3.448 7.064

O5 5 11.343 2.188 4.563

O1 2 0.980 0.987 0.981

O1 3 0.979 0.980 0.979

O1 4 0.966 0.986 0.970

O1 5 0.974 0.986 0.976

O2 3 0.995 0.994 0.993

O2 4 0.982 0.999 0.988

O2 5 0.979 0.993 0.984

O3 4 0.980 0.995 0.983

O3 5 0.975 0.979 0.975

O4 5 0.994 0.991 0.993

Overlaps 1=Lee12, 2=V14 1.9, 3=GA14,
4=GB14, 5=GB11.



Monopoles

WJT
rstu = V JT

rstu − δrtδsuV
T
rs. (3)

V T
rs =

∑
J V JT

rsrs[J ](1 − (−1)J+Tδrs)

(2jr + 1)(2js + 1 + δrs(−1)T )
(4)

In the np scheme each orbit r goes into two rn and rp and
the centroids can be obtained through (x, y = n or p, x �= y)

Vrxsy =
1

2

[
V1

rs

(
1 − δrs

2jr + 1

)
+ V 0

rs

(
1 +

δrs

2jr + 1

)]

Vrxsx = V 1
rs. (5)

Hd
m = Kd +

1

2

∑
rx,sy

Vrxsymrx(msy − δrxsyδxy) .

Examine
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matrix elements referred to Λ = 1.9 fm−1. Rescaling by

(�ω/�ω0)
2 =

(
(p+2)2[(p0+2)3+3]/(p0+2)2[(p+2)3+3]2

)2
so

mass number A appropriate to each major shell with principal
quantum number p+1. p0 = 2 (4) correspond to the pf (pfh)
shell and �ω0 = 12 (8) MeV.
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Make remark on 15N



Same as plot in previous page.

Ca 20 21 cs+n Ca 20 29 cs+n Ni 28 29 cs+n

13 0.0 2.0 13 0.0 0.0 23 0.0 0.8

33 0.0 0.0 3 1.8 2.0 13 0.7 0.0

3 2.4 4.0 23 3.9 4.0 3 1.8 1.1

23 6.2 6.0 4 11.9 4 13.7

4 11.4 24 13.1 24 14.8

24 12.5 14 14.9 14 15.5

44 15.1 44 15.5 44 16.3

14 15.3 34 20.5 34 18.9

Ca 20 19 cs-n Ca 20 27 cs-n K 19 28 cs-p

12 0.0 0.0 33 0.0 0.0 2 0.0 0.0

2 3.9 2.4 12 16.3 2.6 12 0.2 0.4

22 5.2 6.0 2 17.4 2.6 22 1.8 6.0

1 22.1 22 18.7 1 21.7

Notation j − 1/2 p, So
1=0p1/2, 11=0p3/2 , 2=1s1/2 , 12=0d3/2 , 22=0d5/2 , 3=1p1/2

13=1p3/2 , 23=0f5/2 , 33=0f7/2 , 4=2s1/2 , 14=1d3/2 ,
24=1d5/2 , 34=0g7/2 , 44=0g9/2 .
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